“B事件发生的条件下,A事件发生的概率”?

"在A集合内有多少B的样本点"?

“在B约束条件下,A发生的概率变化为?”

“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”

“将B作为样本空间,则A的概率变为多少”

1.条件概率在古典概率中到底该怎么被定义?

2.从交事件AB来推导条件概率公式

3.在考研古典概率中,条件概率公式的一些不足

4.在现实生活中如何理解条件概率?

一、条件概率在古典概率中到底该怎么被定义?

我们经常把条件概率定义为“B事件发生的条件下,A事件发生的概率”,这个定义如果一开始就扔出来,往往会对后面的学习产生误导。

因为B事件发生可以看作是“随机事件B中的一个基本样本点的发生”,但是古典概率中样本点都是平等的,所以是不可能互相产生影响的。也就是说事件B中的一个基本样本点,就古典概率来讲,对A事件中包含的任意样本点都不会产生关系。

这个推论可以总结为“古典概率的所有样本点之间都是等概率的,都是平等的”

其实这就是古典概率的两条定义之一,那到底在古典概率中,应该怎么定义条件概率呢?

其实应该定义为

“B随机事件中包含的任意一个样本点,也同时属于A事件的样本点集合的概率”

那为什么要这样定义呢,还是需要从交事件P(AB)的计算中来推导。

二.从交事件AB来推导条件概率公式

交事件的意思就是“A、B同时发生的概率”,如果我们知道P(A)和P(B)那么如何计算P(AB)呢?

许多人都想到直接相乘:

但是P(AB)真的一定等于P(A)乘P(B)吗?

这里其实隐藏了一个条件就是:事件A和事件B两者没有任何关系,只有这样才能直接相乘。

但是古典概率的各个样本点之间的关系是

“古典概率各个样本点事件互为互斥事件”

这意味着什么呢?意味着发生了事件A中的一个样本点,则事件A集合之外的样本点一定会不会发生。

这也就是说如果事件A,B存在于一个样本空间,那么从古典概率的角度来看,它们之间就是一定存在联系的,不能这样直接乘。

那应该怎么做呢?我们还是从V-N图的思路来想,P(AB)可以看作是从样本空间任意选取一个样本点,正好落在AB的重复交合区域的概率。

*那么我们已经知道P(A)的概率了,也就是“在空间中任意选取一个点,落在A的概率”,如果我们把范围再缩小一次,也就是说我们可以得知,在A集合内有多少B的样本点,这样一个比例,然后用P(A)去乘这个比例,就可以得到最终结果P(AB)。

(注意:我们需要得知的不是“存在于A中,也同时存在于B中的而样本点个数”,而仅仅需要得知一个比例值(如果知道前者,就不需要计算这么麻烦,直接古典概率定义就好))。

这个比例值就是条件概率:

所以条件概率的定义出现:

“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”

可见,在古典概率中,如果用“B事件发生的条件下,A事件发生的概率”这种定义,是不容易推导出条件概率的公式定义的,必须从交事件来推导,但这种推导也会产生一个小疑惑。

三.在考研古典概率中,条件概率公式的一些不足

根据我上文之前的推导,我们可以推导出这样的公式:

这个公式,可以看作是,事件A,B的发生顺序,对AB同时发生是没有影响。

这是因为古典概率中的事件发生,都可以看作是集合运算,而集合运算交换律,计算顺序不影响结果。

但是在现实世界就不不一定是这样的了。

四.在现实生活中如何理解条件概率?

在现实世界我们遇到很多事件,是具有顺序性的,比如零件组装,如果事件B先执行,那么事件A可能就做不了,这应该怎么设计事件呢。

答案是没法设计,因为这是古典概率本身的定义导致的缺点,如果遇到这样的事件你就不可以使用古典概率来预测了,需要换模型了。

那么就单纯谈古典概率中的条件概率,我们可以理解为:

“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”

“如果B事件必然发生,则A事件也跟着B事件发生的概率是多少”

由此推出了v-n图理解,可以看作是样本空间的缩小。

“将A作为样本空间,则B的概率变为多少”

如何正确理解古典概率中的条件概率 《考研概率论学习之我见》 -by zobol的更多相关文章

  1. 2.如何正确理解古典概率中的条件概率《zobol的考研概率论教程》

    写本文主要是帮助粉丝理解考研中的古典概率-条件概率的具体定义. "B事件发生的条件下,A事件发生的概率"? "在A集合内有多少B的样本点"? "在B约 ...

  2. 怎么理解相互独立事件?真的是没有任何关系的事件吗?《考研概率论学习之我见》 -by zobol

    1.从条件概率的定义来看独立事件的定义 2.从古典概率的定义来看独立事件的定义 3.P(A|B)和P(A)的关系是什么? 4.由P(AB)=P(A)P(B)推出"独立" 5.从韦恩 ...

  3. 开始讨论离散型随机变量吧!《考研概率论学习之我见》 -by zobol

    上一文中,笔者给出了随机变量的基本定义:一个可测映射,从结果空间到实数集,我们的目的是为了引入函数这个数学工具到考研概率论中,但是我们在现实中面对的一些事情结果,映射而成的随机变量和其对应的概率值,并 ...

  4. 对互斥事件和条件概率的相互理解《考研概率论学习之我见》 -by zobol

    1.从条件概率来定义互斥和对立事件 2.互斥事件是独立事件吗? 3.每个样本点都可以看作是互斥事件,来重新看待条件概率 一.从条件概率来定义互斥和对立事件 根据古典概率-条件概率的定义,当在" ...

  5. 最简单的离散概率分布,伯努利分布 《考研概率论学习之我见》 -by zobol

    上文讲了离散型随机变量的分布,我们从最简单的离散型分布伯努利分布讲起,伯努利分布很简单,但是在现实生活中使用的很频繁.很多从事体力工作的人,在生活中也是经常自觉地"发现"伯努利分布 ...

  6. 如何正确理解正则表达式中的分隔符 \b

    前言:好久不见,博客园. 最近在学习研究regex,其中有个特迷惑自己的知识点是分隔符 ( word boundary) [\b] (注:为了方便,后文都以[]来包含字符,并不是reg规则里面的[] ...

  7. 正确理解JavaScript中的this关键字

    JavaScript有this关键字,this跟JavaScript的执行上下文密切相关,很多前端开发工程师至今对this关键字还是模棱两可,本文将结合代码讲解下JavaScript的this关键字. ...

  8. (转载)新手如何正确理解GitHub中“PR(pull request)”中的意思

    我从知乎看到的两个答案,分别从实际意义以及语言学角度告诉你改怎么理解PR,很简洁,这个理解非常棒,会解决新手刚看到PR(pull request)这个词时的困惑.   实际意义:   有一个仓库,叫R ...

  9. 正确理解MySQL中的where和having的区别

    原文:https://blog.csdn.net/yexudengzhidao/article/details/54924471 以前在学校里学习过SQLserver数据库,发现学习的都是皮毛,今天以 ...

随机推荐

  1. python---双链表的常用操作

    class Node(object): """结点""" def __init__(self, data): self.data = dat ...

  2. 帝国CMS 后台登录空白

    编辑/e/config/config.php中 $ecms_config['esafe']['ckfromurl']=0; //是否启用来源地址验证,0为不验证,1为全部验证,2为后台验证,3为前台验 ...

  3. java实现二叉树的Node节点定义手撕8种遍历(一遍过)

    java实现二叉树的Node节点定义手撕8种遍历(一遍过) 用java的思想和程序从最基本的怎么将一个int型的数组变成Node树状结构说起,再到递归前序遍历,递归中序遍历,递归后序遍历,非递归前序遍 ...

  4. Java学习day6

    今天跟着教学视频做了个简易的学生管理系统 在编写完全部代码之后出现了在空白处右键没有run as选项的问题,通过csdn与博客园上的多个帖子介绍,得知是jdk配置不对,正确配置后问题得到解决 明天学习 ...

  5. DjangoRestFramework框架三种分页功能的实现 - 在DjangoStarter项目模板中封装

    前言 继续Django后端开发系列文章.刚好遇到一个分页的需求,就记录一下. Django作为一个"全家桶"型的框架,本身啥都有,分页组件也是有的,但默认的分页组件没有对API开发 ...

  6. c#中判断类是否继承于泛型基类

    在c#中,有时候我们会编写类似这样的代码: public class a<T> { //具体类的实现 } public class b : a<string>{} 如果b继承a ...

  7. OrchardCore Headless建站拾遗

    书接上回,OrchardCore的基本设置写了,但是有一说一,这个东西还是挺复杂的,如果需要构建一个简单的企业网站,还需要干点别的活. 本文考虑在尽量少编程的基础上,完成一个Headless网站的设置 ...

  8. MySql免安装版 Error 2003 Can connect to MySQL server on ...

    现象描述:mysql只能本地登录,无法远程登录 解决方案: 1. 查看mysql端口(默认端口3306,命令端口根据需要修改),发现只有本地连接端口开放. netstat -an|findstr 33 ...

  9. 测试必会 Docker 实战(一):掌握高频命令,夯实内功基础

    在 Dokcer 横空出世之前,应用打包一直是大部分研发团队的痛点.在工作中,面对多种服务,多个服务器,以及多种环境,如果还继续用传统的方式打包部署,会浪费大量时间精力. 在 Docker 出现后,它 ...

  10. 浅谈 Linux IO

    公众号关注 「开源Linux」 回复「学习」,有我为您特别筛选的学习资料~ 来源于:360云计算 1 前言 Linux IO是文件存储的基础.本文参考了网上博主的一些文章,主要总结了LinuxIO的基 ...