如何正确理解古典概率中的条件概率 《考研概率论学习之我见》 -by zobol
“B事件发生的条件下,A事件发生的概率”?
"在A集合内有多少B的样本点"?
“在B约束条件下,A发生的概率变化为?”
“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”
“将B作为样本空间,则A的概率变为多少”
1.条件概率在古典概率中到底该怎么被定义?
2.从交事件AB来推导条件概率公式
3.在考研古典概率中,条件概率公式的一些不足
4.在现实生活中如何理解条件概率?
一、条件概率在古典概率中到底该怎么被定义?
我们经常把条件概率定义为“B事件发生的条件下,A事件发生的概率”,这个定义如果一开始就扔出来,往往会对后面的学习产生误导。
因为B事件发生可以看作是“随机事件B中的一个基本样本点的发生”,但是古典概率中样本点都是平等的,所以是不可能互相产生影响的。也就是说事件B中的一个基本样本点,就古典概率来讲,对A事件中包含的任意样本点都不会产生关系。
这个推论可以总结为“古典概率的所有样本点之间都是等概率的,都是平等的”
其实这就是古典概率的两条定义之一,那到底在古典概率中,应该怎么定义条件概率呢?
其实应该定义为
“B随机事件中包含的任意一个样本点,也同时属于A事件的样本点集合的概率”
那为什么要这样定义呢,还是需要从交事件P(AB)的计算中来推导。
二.从交事件AB来推导条件概率公式
交事件的意思就是“A、B同时发生的概率”,如果我们知道P(A)和P(B)那么如何计算P(AB)呢?
许多人都想到直接相乘:
但是P(AB)真的一定等于P(A)乘P(B)吗?
这里其实隐藏了一个条件就是:事件A和事件B两者没有任何关系,只有这样才能直接相乘。
但是古典概率的各个样本点之间的关系是
“古典概率各个样本点事件互为互斥事件”
这意味着什么呢?意味着发生了事件A中的一个样本点,则事件A集合之外的样本点一定会不会发生。
这也就是说如果事件A,B存在于一个样本空间,那么从古典概率的角度来看,它们之间就是一定存在联系的,不能这样直接乘。
那应该怎么做呢?我们还是从V-N图的思路来想,P(AB)可以看作是从样本空间任意选取一个样本点,正好落在AB的重复交合区域的概率。
*那么我们已经知道P(A)的概率了,也就是“在空间中任意选取一个点,落在A的概率”,如果我们把范围再缩小一次,也就是说我们可以得知,在A集合内有多少B的样本点,这样一个比例,然后用P(A)去乘这个比例,就可以得到最终结果P(AB)。
(注意:我们需要得知的不是“存在于A中,也同时存在于B中的而样本点个数”,而仅仅需要得知一个比例值(如果知道前者,就不需要计算这么麻烦,直接古典概率定义就好))。
这个比例值就是条件概率:
所以条件概率的定义出现:
“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”
可见,在古典概率中,如果用“B事件发生的条件下,A事件发生的概率”这种定义,是不容易推导出条件概率的公式定义的,必须从交事件来推导,但这种推导也会产生一个小疑惑。
三.在考研古典概率中,条件概率公式的一些不足
根据我上文之前的推导,我们可以推导出这样的公式:
这个公式,可以看作是,事件A,B的发生顺序,对AB同时发生是没有影响。
这是因为古典概率中的事件发生,都可以看作是集合运算,而集合运算交换律,计算顺序不影响结果。
但是在现实世界就不不一定是这样的了。
四.在现实生活中如何理解条件概率?
在现实世界我们遇到很多事件,是具有顺序性的,比如零件组装,如果事件B先执行,那么事件A可能就做不了,这应该怎么设计事件呢。
答案是没法设计,因为这是古典概率本身的定义导致的缺点,如果遇到这样的事件你就不可以使用古典概率来预测了,需要换模型了。
那么就单纯谈古典概率中的条件概率,我们可以理解为:
“B事件中的一个样本点,同时也落在A样本点集合的概率是多少”
“如果B事件必然发生,则A事件也跟着B事件发生的概率是多少”
由此推出了v-n图理解,可以看作是样本空间的缩小。
“将A作为样本空间,则B的概率变为多少”
如何正确理解古典概率中的条件概率 《考研概率论学习之我见》 -by zobol的更多相关文章
- 2.如何正确理解古典概率中的条件概率《zobol的考研概率论教程》
写本文主要是帮助粉丝理解考研中的古典概率-条件概率的具体定义. "B事件发生的条件下,A事件发生的概率"? "在A集合内有多少B的样本点"? "在B约 ...
- 怎么理解相互独立事件?真的是没有任何关系的事件吗?《考研概率论学习之我见》 -by zobol
1.从条件概率的定义来看独立事件的定义 2.从古典概率的定义来看独立事件的定义 3.P(A|B)和P(A)的关系是什么? 4.由P(AB)=P(A)P(B)推出"独立" 5.从韦恩 ...
- 开始讨论离散型随机变量吧!《考研概率论学习之我见》 -by zobol
上一文中,笔者给出了随机变量的基本定义:一个可测映射,从结果空间到实数集,我们的目的是为了引入函数这个数学工具到考研概率论中,但是我们在现实中面对的一些事情结果,映射而成的随机变量和其对应的概率值,并 ...
- 对互斥事件和条件概率的相互理解《考研概率论学习之我见》 -by zobol
1.从条件概率来定义互斥和对立事件 2.互斥事件是独立事件吗? 3.每个样本点都可以看作是互斥事件,来重新看待条件概率 一.从条件概率来定义互斥和对立事件 根据古典概率-条件概率的定义,当在" ...
- 最简单的离散概率分布,伯努利分布 《考研概率论学习之我见》 -by zobol
上文讲了离散型随机变量的分布,我们从最简单的离散型分布伯努利分布讲起,伯努利分布很简单,但是在现实生活中使用的很频繁.很多从事体力工作的人,在生活中也是经常自觉地"发现"伯努利分布 ...
- 如何正确理解正则表达式中的分隔符 \b
前言:好久不见,博客园. 最近在学习研究regex,其中有个特迷惑自己的知识点是分隔符 ( word boundary) [\b] (注:为了方便,后文都以[]来包含字符,并不是reg规则里面的[] ...
- 正确理解JavaScript中的this关键字
JavaScript有this关键字,this跟JavaScript的执行上下文密切相关,很多前端开发工程师至今对this关键字还是模棱两可,本文将结合代码讲解下JavaScript的this关键字. ...
- (转载)新手如何正确理解GitHub中“PR(pull request)”中的意思
我从知乎看到的两个答案,分别从实际意义以及语言学角度告诉你改怎么理解PR,很简洁,这个理解非常棒,会解决新手刚看到PR(pull request)这个词时的困惑. 实际意义: 有一个仓库,叫R ...
- 正确理解MySQL中的where和having的区别
原文:https://blog.csdn.net/yexudengzhidao/article/details/54924471 以前在学校里学习过SQLserver数据库,发现学习的都是皮毛,今天以 ...
随机推荐
- vue3跳转路由3步曲
import { useRouter } from 'vue-router'; // 1. 引入路由export default { setup() { const $router ...
- 数据结构 - AVL 树
简介 基本概念 AVL 树是最早被发明的自平衡的二叉查找树,在 AVL 树中,任意结点的两个子树的高度最大差别为 1,所以它也被称为高度平衡树,其本质仍然是一颗二叉查找树. 结合二叉查找树,AVL 树 ...
- QGIS 3.14插件开发——Win10系统PyCharm开发环境搭建四步走
前言:最近实习要求做一个QGIS插件,网上关于QGIS 3.14插件开发环境搭建的文档不多,而且也不算太全面.正好实习的时候写了一个文档,在这里给大家分享一下. 因为是Word转的Markdown,可 ...
- 推荐系统 TOP K 评价指标
目录 符号说明 示例数据 一.Hit Rate 二.Recall 三.NDCG 符号说明 \(top\_k\): 当前用户预测分最高的k个items,预测分由高到低排序 $pos$: 当前用户实际点击 ...
- vscode设置vue文件高亮显示
打开VS Code,左上角 文件->首选项->设置->文本编辑器->文件,点击右侧的"在settings.json中编辑",进入settings.json文 ...
- 红旗 Linux 桌面操作系统11来了:支持国产自主CPU,全新UI风格设计,兼容面广...
链接:https://reurl.cc/g8ke9X 红旗Linux桌面操作系统11将于1月10日开放预览版的下载,新版本具有良好的硬件兼容,支持多款国产自主CPU品牌,同时还具有丰富的外设支持及海量 ...
- ts中 any、unknown、never 、void的区别
any.unknown.never .void的区别 any 表示任意类型,设置为any相当于对该变量关闭了TS的类型检测.不建议使用 let a;(隐式any) //声明变量不赋值,就是any 等效 ...
- SpringBoot从0到0.7——第三天
SpringBoot从0到0.7--第三天 今天学习整合JDBC,连接数据库的增删改查,写出来容易,理解原理读懂代码才是主要的. 首先创建项目,勾选上一下模块 在application.yml添加 s ...
- 1.Docker简介
Docker是个什么东西 假定您在开发一个项目,您使用的是一台笔记本电脑而且您的开发环境具有特定的配置.其他开发人员身处的环境配置也各有不同.您正在开发的应用依赖于您当前的配置且还要依赖于某些配置文件 ...
- python工具---snmp流量监控,自定义粒度,业务突发可视化
现在主流监控软件和云平台提供的流量监控,监控粒度最小只能设置为1分钟,无法准确定位故障,特别是瞬时突发较大的业务 对比python的snmp库还是更喜欢用subprocess调用snmpwalk命令, ...