luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)

Luogu

题外话:

LN切这题的人比切T1的多。

我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来。。。

我怕不是除了数据结构啥也不会。

我是傻逼。

题解时间

不弄纯柿子推导,来点阳间的组合意义证明。

首先毫无疑问拆成: $$ \sum_{i=0}^{m} a_{i} \sum_{k=0}^{n} k^{i} \cdot x^{k} \cdot \binom{n}{k} $$

然后考虑如何求 $$ \sum_{k=0}^{n} k^{i} \cdot x^{k} \cdot \binom{n}{k} $$

从组合意义考虑: $ n $ 个不同盒子 $ i $ 个不同的球,盒子可以染 $ n $ 种颜色之一或者不染色,之后将所有球装进染色的盒子里。

转换成:选择在 $ j $ 个盒子里放所有的球,之后这 $ j $ 个盒子必须染色,其余可染可不染,而放球的方案数是 $ \begin{Bmatrix}i \newline j\end{Bmatrix} j! $

就变成了 $$ \sum_{j=0}^{i} \binom{n}{j} x^{j} (x+1)^{n-j} \begin{Bmatrix}i \newline j\end{Bmatrix} j! $$

#include<bits/stdc++.h>
using namespace std;
typedef long long lint;
// #define int long long
struct pat{int x,y;pat(int x=0,int y=0):x(x),y(y){}bool operator<(const pat &p)const{return x==p.x?y<p.y:x<p.x;}};
template<typename TP>inline void read(TP &tar)
{
TP ret=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){ret=ret*10+(ch-'0');ch=getchar();}
tar=ret*f;
}
template<typename TP,typename... Args>inline void read(TP& t,Args&... args){read(t),read(args...);}
namespace RKK
{
const int N=1011;
int n,m,x,mo,a[N],s[N][N];
int fpow(int a,int p){int ret=1;while(p){if(p&1)ret=(lint)ret*a%mo;a=(lint)a*a%mo,p>>=1;}return ret;} signed main()
{
read(n,x,mo,m);for(int i=0;i<=m;i++) read(a[i]);
s[0][0]=1;for(int i=1;i<=1000;i++)for(int j=1;j<=i;j++) s[i][j]=(s[i-1][j-1]+1ll*s[i-1][j]*j)%mo;
int ans=0;
for(int i=0;i<=m;i++)
{
int fc=1,tmp=0;
for(int j=0;j<=i;j++)
tmp=(tmp+1ll*fc*s[i][j]%mo*fpow(x,j)%mo*fpow(x+1,n-j))%mo,fc=1ll*fc*(n-j)%mo;
ans=(ans+1ll*a[i]*tmp)%mo;
}printf("%d\n",ans);
return 0;
}
}
signed main(){return RKK::main();}

luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)的更多相关文章

  1. [省选联考 2020 A 卷] 组合数问题

    题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...

  2. [题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂

    题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项 ...

  3. luoguP6623 [省选联考 2020 A 卷] 树(trie树)

    luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...

  4. luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)

    luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...

  5. 洛谷P6623——[省选联考 2020 A 卷] 树

    传送门:QAQQAQ 题意:自己看 思路:正解应该是线段树/trie树合并? 但是本蒟蒻啥也不会,就用了树上二次差分 (思路来源于https://www.luogu.com.cn/blog/dengy ...

  6. P6628-[省选联考 2020 B 卷] 丁香之路【欧拉回路,最小生成树】

    正题 题目链接:https://www.luogu.com.cn/problem/P6628 题目大意 给出\(n\)个点的一张完全无向图,\(i\sim j\)的边权是\(|i-j|\). 然后给出 ...

  7. 洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)

    题面传送门 u1s1 这种题目还是相当套路的罢 首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和 ...

  8. 题解 P6622 [省选联考 2020 A/B 卷] 信号传递

    洛谷 P6622 [省选联考 2020 A/B 卷] 信号传递 题解 某次模拟赛的T2,考场上懒得想正解 (其实是不会QAQ), 打了个暴力就骗了\(30pts\) 就火速溜了,参考了一下某位强者的题 ...

  9. luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)

    luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp) Luogu 题外话: 我可能是傻逼, 但不管我是不是傻逼, 我永远单挑出题人. 题解时间 看数据范围可以确定状压dp. ...

随机推荐

  1. Kinect v2 + WPF获取RGB与Depth图像

    date: 2017-09-04 14:51:07 Kinect V2的Depth传感器采用的是「Time of Flight(TOF)」的方式, 通过从投射的红外线反射后返回的时间来取得Depth信 ...

  2. ansible手动添加模块

    文章目录 安装ansible 验证ansible版本 定义ansible配置文件路径 为ansible添加模块 由于使用pip安装的ansible,自带的模块会比较少,有的模块会不存在,需要自己手动添 ...

  3. ansible中的hostvars

    首先来看一个例子:假设我想得到主机IP为172.25.250.9的完全限定域名(FQDN),但是我无法登录该主机,那么就可以用本机里面的hostvars魔法变量(后面会分享我对魔法这个词的理解)这个字 ...

  4. [题解]RQNOJ PID86 智捅马蜂窝

    链接:http://www.rqnoj.cn/problem/86 思路:单源点最短路 建图:首先根据父子关系连双向边,边权是距离/速度:再根据跳跃关系连单向边,边权是自由落体的时间(注意自由下落是一 ...

  5. windev中编辑表单确认按钮的code规范建议

    编辑表单的确认操作,是一个常规操作,根据过往经验,建议按以下规范代码来撸.案例如下所示(主子表保存): //填报规范:必填项目 IF COMBO_招聘职位 = "" OR COMB ...

  6. 【C# .Net GC】GC初始化设置 和GcSetting

    相关的类 GcSetting 类 GCLargeObjectHeapCompactionMode 枚举 GCLargeObjectHeapCompactionMode 枚举 属性的值 GCSettin ...

  7. MySQL必知必会学习笔记(详细)

    目录 01 了解SQL 02 MySQL简介 03 使用MySQL 04 检索数据 select, from, distinct, limit, offset 05 排序 order by 06 过滤 ...

  8. 2016EC Final F.Mr. Panda and Fantastic Beasts

    题目大意 \(T(1\leq T\leq42)\)组数据,给定\(n(2\leq n\leq 50000)\)个字符串\(S_{i}(n\leq\sum_{i=1}^{n}S_{i}\leq 2500 ...

  9. 5.注入内部Bean

    我们将定义在 <bean> 元素的 <property> 或 <constructor-arg> 元素内部的 Bean,称为"内部 Bean". ...

  10. MM32F0020 UART1中断接收和UART1中断发送

    目录: 1.MM32F0020简介 2.初始化MM32F0020 UART1和NVIC中断 3.编写MM32F0020 UART1使能中断发送函数 4.编写MM32F0020 UART1中断接收和中断 ...