CodeTON Round 1 (Div. 1 + Div. 2, Rated, Prizes!) A ~ D
A.
给定一个序列,对于任意1<=k<=n 都满足|ai−ak|+|ak−aj|=|ai−aj|,
找满足条件的i和j并输出
思路:
观察样例,发现输出的是最大值和最小值,那么猜答案是最大值和最小值,进行证明
若答案不是最大值和最小值,则一定存在一个k使得|ak-ap|大于|aj-ai| 一定不满足|ai−ak|+|ak−aj|=|ai−aj| 与命题矛盾
所以记录最大值和最小值 输出即可。
代码:
#include <bits/stdc++.h>
using namespace std;
#define x first
#define y second
#define endl '\n'
#define int long long
#define debug(x) cout << "*" << x << endl;
const int P = 13131;
#define ll long long
const int mod = 1E6 + 7;
const int INF = 0x3f, sINF = 0x3f3f3f3f;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<long long, long long> PLL;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const int N = 3e5 + 10;;
int T;
const int UN = 1e9 + 10; signed main()
{
cin>>T;
while(T--)
{
int n;
int maxa = 0, mina = UN;
cin>>n;
int ans1, ans2;
for(int i = 1; i <= n; i++)
{
int temp;
cin>>temp; if(temp > maxa)
{
ans1 = i;
maxa = temp;
} if(temp < mina)
{
ans2 = i;
mina = temp;
}
}
if(n == 1) cout<<"1 1"<<endl;
else cout<<ans2<<" "<<ans1<<endl; }
}
B
给定一个序列,每次去除任意一个元素,并且将其他剩余元素都减去这个元素的值,给定一个k,能否让最后剩下的那个数为k
思路:
推公式,模拟一下a1,a2 和 a1,a2,a3情况,并且以总和的角度来看,发现所有的答案都只与两个元素之间的差的绝对值有关
a1,a2,a3情况: 总和为a1+a2+a3
假如去除的是a2 那么总和就为(a1 - a2) + (a3 - a2),剩两个元素的时候求得就是他俩的差的绝对值了,那么就是|a1 - a2 - a3 + a2| = |a1 - a3|
去除的是其他同理,发现多个元素的时候都可以消成这种形式。那么答案就是在任意两个元素的差的绝对值之中,哈希表判断是否存在即可。
代码:
#include <bits/stdc++.h>
using namespace std;
#define x first
#define y second
#define endl '\n'
#define int long long
#define debug(x) cout << "*" << x << endl;
const int P = 13131;
#define ll long long
const int mod = 1E6 + 7;
const int INF = 0x3f, sINF = 0x3f3f3f3f;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<long long, long long> PLL;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const int N = 2e5 + 10;;
int T;
const int UN = 1e9 + 10;
int q[N]; signed main()
{
cin>>T;
while(T--)
{
map<int, bool> s;
int n, k;
cin>>n>>k;
for(int i = 0; i < n; i++)
{
cin>>q[i];
s[q[i]] = true; //出现过这个
} bool isk = false;
for(int i = 0; i < n; i++)
if(s[q[i] - k] || s[q[i] + k])
{
isk = true;
break;
} if(isk) puts("YES");
else puts("NO");
}
}
C
给定一个序列,可以选择任意k>=2 对里面所有元素模k 有没有可能让所有元素相等。
思路:仔细想想即可发现,只要从大到小模,一定可以把所有元素模为0或者1,那么问题仅存在于0,1之间。
1怎么也到不了0 ,所以一旦0,1都出现,就一定NO。如果没0,只有1,那所有元素必须化为1,但对于p %= p-1,如果存在另一个p-1的元素,那么一定会出现0
所以此时不能存在差值为1的元素对。
其他所有情况都输出YES,只要按照从大到小模
代码:
#include <bits/stdc++.h>
using namespace std;
#define x first
#define y second
#define endl '\n'
#define int long long
#define debug(x) cout << "*" << x << endl;
const int P = 13131;
#define ll long long
const int mod = 1E6 + 7;
const int INF = 0x3f, sINF = 0x3f3f3f3f;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<long long, long long> PLL;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const int N = 1e5 + 10;;
int T;
const int UN = 1e9 + 10;
int q[N]; signed main()
{
cin>>T;
while(T--)
{
int n;
cin>>n;
for(int i = 0; i < n; i++) cin>>q[i];
sort(q, q + n);
bool find0 = false, find1 = false;
int p = 0;
while(q[p] <= 1 && p < n)
{
if(q[p] == 0) find0 = true;
if(q[p] == 1) find1 = true;
p++;
} if(find0 && find1)
{
puts("NO");
continue;
} if(!find0 && find1)
{
bool flag = false;
for(int i = 0; i < n - 1; i++)
if(q[i + 1] - q[i] == 1)
{
flag = true;
break;
}
if(!flag) puts("YES");
else puts("NO"); continue;
} puts("YES"); }
}
D
给定一个数,如果这个数可以被k个能够被模k后互不相等的数相加而得到,那么这个数称为k-good数,对于这个n,输出任意一个k即可,没有则为-1
思路:(可以先打表找规律
条件转化一下,很容易就能得到条件是 (n - sum(0, 1, ..., k - 1)) % k == 0;
然后观察奇数,发现2-good可以作用于任意奇数,所以奇数全部输出2
根据上述条件来判断偶数,(n - (k - 1) * k / 2 <求和公式>) % k == 0
如果k是n的因子,并且求和项为整数且小于n,那么一定能输出,观察(k - 1) * k / 2项,发现k要么是奇数,要么是2,这两种情况能让这项为整。
又因为枚举的是偶数,所以我们只需要找到2^p * 最大奇因子 = n即可
2^p * 最大奇因子 = n
先判断临界情况 前两者相等时,一定有n - 求和 = 0,此时n = 2^(2*p) 一定不能输出,此时输出-1,(意思是,n是2^a就输出-1就行)
其他情况,一定一个大于sqrt(n), 一个小于sqrt(n), 小于的数的(n - (k - 1) * k / 2 <求和公式>)一定为正,大于的一定为负
那么输出两者的最小值就行。
代码:
#include <bits/stdc++.h>
using namespace std;
#define x first
#define y second
#define endl '\n'
#define int long long
#define debug(x) cout << "*" << x << endl;
const int P = 13131;
#define ll long long
const int mod = 1E6 + 7;
const int INF = 0x3f, sINF = 0x3f3f3f3f;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<long long, long long> PLL;
int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1};
const int N = 1e5 + 10;;
int T;
const int UN = 1e9 + 10;
int q[N]; signed main()
{
cin>>T;
while(T--)
{
ll n;
cin>>n;
ll rem = n;
if(n % 2 == 1) cout<<"2"<<endl;
else {
ll k = 1;
while(n % 2 == 0)
{
n /= 2;
k *= 2;
}
if(n == 1) cout<<"-1"<<endl;
else
{ //此时剩下个奇数
k *= 2;
cout<<min(k, n)<<endl; }
} }
}
CodeTON Round 1 (Div. 1 + Div. 2, Rated, Prizes!) A ~ D的更多相关文章
- Codeforces 1023 A.Single Wildcard Pattern Matching-匹配字符 (Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Fi)
Codeforces Round #504 (rated, Div. 1 + Div. 2, based on VK Cup 2018 Final) A. Single Wildcard Patter ...
- CF Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined)
1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) B. Batch Sort 暴力枚举,水 1.题意:n*m的数组, ...
- Codeforces Beta Round #27 (Codeforces format, Div. 2)
Codeforces Beta Round #27 (Codeforces format, Div. 2) http://codeforces.com/contest/27 A #include< ...
- Codeforces Round #438 (Div.1+Div.2) 总结
本来兴致勃勃的想乘着这一次上紫,于是很早很早的到了机房 但是好像并没有什么用,反而rating-=47 Codeforces Round #438(Div.1+Div.2) 今天就这样匆匆的总结一下, ...
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-D. Restore Permutation-构造+树状数组
Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-D. Restore Permutation-构造+树状数组 [Pro ...
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-C. Magic Grid-构造
Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-C. Magic Grid-构造 [Problem Descripti ...
- Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构
Manthan, Codefest 19 (open for everyone, rated, Div. 1 + Div. 2)-E. Let Them Slide-思维+数据结构 [Problem ...
- Codeforces Round #792 (Div. 1 + Div. 2) A-E
Codeforces Round #792 (Div. 1 + Div. 2) A-E A 题目 https://codeforces.com/contest/1684/problem/A 题解 思路 ...
- Codeforces Round #792 (Div. 1 + Div. 2) // C ~ E
比赛链接:Dashboard - Codeforces Round #792 (Div. 1 + Div. 2) - Codeforces C. Column Swapping 题意: 给定一个n*m ...
- 【codeforces】【比赛题解】#868 CF Round #438 (Div.1+Div.2)
这次是Div.1+Div.2,所以有7题. 因为时间较早,而且正好赶上训练,所以机房开黑做. 然而我们都只做了3题.:(. 链接. [A]声控解锁 题意: Arkady的宠物狗Mu-mu有一只手机.它 ...
随机推荐
- [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2)
[源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2) 目录 [源码解析] NVIDIA HugeCTR,GPU版本参数服务器--- (2) 0x00 摘要 0x01 总体流程 ...
- 02 HTML标签
2. HTML标签 1. HTML简介 用户使用浏览器打开网页看到结果的过程就是:浏览器将服务端的文本文件(即网页文件)内容下载到本地,然后打开显示的过程. 而文本文件的文档结构只有空格和黄航两种组织 ...
- Solution -「ROI 2019」「LOJ #3192」课桌
\(\mathcal{Description}\) Link. 原题意足够简洁啦.( \(\mathcal{Solution}\) 乍一看比较棘手,但可以从座位的安排方式入手,有结论: ...
- Process Doppelgänging
进程注入:Process Doppelgänging 攻击者可以通过Process Doppelgänging将恶意代码注入到进程中,从而逃避基于进程的防护,并且进行可能的特权提升.Process ...
- 『无为则无心』Python面向对象 — 51、私有成员变量(类中数据的封装)
目录 1.私有成员变量介绍 (1)私有成员变量概念 (2)私有成员变量特点 (3)私有成员变量体验 2.属性私有化工作原理 3.定义成员变量的标识符规范 4.私有成员变量的获取和设置方式 1.私有成员 ...
- 【C#】AssemblyLoadContext 加载程序集
使用 .NET Core 3.0 的 AssemblyLoadContext 实现插件热加载 一般情况下,一个 .NET 程序集加载到程序中以后,它的类型信息以及原生代码等数据会一直保留在内存中,.N ...
- Docker学习笔记(详细)
目录 01 介绍 02 Docker安装 03 Docker常用命令 04 Docker镜像 05 Docker容器数据卷 06 Dockerfile解析 Dockerfile构建过程解析 Docke ...
- js根据ClassName来删除元素(有坑误入)
今天,被一个很简单的问题坑了一下午,基础不扎实.(js根据class名称来删除Dom元素) 但是结果却不是这样的.弄了好久还不知道怎么回事.最后找到了答案. 结果如下:为啥还有test2,4,6呢. ...
- Linux概述及简单命令
Linux概述及简单命令 转自https://www.cnblogs.com/ayu305/p/Linux_basic.html 一.准备工作 1.环境选择:VMware\阿里云服务器 2.Linux ...
- Java:安装新版本Java、环境配置
最新版2021年版 Java安装目录 2.在系统变量中设置2项属性,JAVA_HOME.PATH(大小写无所谓),若已存在这点击编辑,不存在则新建 参数为: JAVA_HOME: D:\Java\ ...