1. 使用 fluent-bit 采集文件

简介

Fluent Bit是一款快速、灵活的日志处理器,旨在收集、解析、过滤日志,并将日志发送到远程数据库,以便执行数据分析。

数据分析通常发生在数据存储和数据库索引之后,但对于实时和复杂的分析需求,在日志处理器中处理仍在运行的数据会带来很多好处,这种方法被称为边缘流处理(Stream Processing on the Edge)。

流式处理引擎架构

fluent-bit之所以这么说,其实是因为其架构设计了一个流式的处理引擎:

默认实现组件

fluent-bit实现了不少默认的组件:

  • INPUT

    collectd, cpu-metrics, disk-io-metrics, docker-events, docker-metrics, dummy, exec, fluentbit-metrics, forward, head, health, http, kernel-logs, memory-metrics, mqtt, network-io-metrics, nginx, node-exporter-metrics, process, random, serial-interface, standard-input, statsd, syslog, systemd, tail, tcp, thermal, windows-event-log, windows-event-log-winevtlog, windows-exporter-metrics,

  • OUTPUT

    new-relic, forward, prometheus-remote-write, treasure-data, opensearch, skywalking, prometheus-exporter, azure, azure_blob, postgresql, bigquery, loki, elasticsearch, counter, null, cloudwatch, standard-output, syslog, websocket, flowcounter, logdna, firehose, influxdb, tcp-and-tls, kinesis, stackdriver, kafka-rest-proxy, opentelemetry, stackdriver_special_fields, slack, gelf, s3, datadog, splunk, file, http, kafka, nats

  • FILTERS

    grep, aws-metadata, nightfall, lua, parser, type-converter, nest, record-modifier, standard-output, throttle, multiline-stacktrace, expect, tensorflow, geoip2-filter, modify, checklist, kubernetes, rewrite-tag

  • PARSERS

    ltsv, configuring-parser, regular-expression, decoders, json, logfmt

该系列文章将介绍如何使用Fluent Bit,进行数据采集、处理、分发的过程。

本节将以采集文本文件入手,并结合监控方法来逐步为您展开介绍;

编译部署

前置条件

fluent-bit 采用c语言编写,可以通过容器或者二进制进行部署安装;其占用较少的CPU和内存资源,目前能够兼容绝大部分基于x86、x86_64、arm32v7和arm64v8的系统平台;

为了能够进行在本地进行测试编译,你需要如下依赖环境:

  • GCC or Clang
  • CMake
  • Flex & Bison: 仅当你需要流处理和记录访问器特性(这两种功能默认也是开启的)

编译

# clone 代码
git clone https://github.com/fluent/fluent-bit.git # 切换到当前最新的一个发布分支
git checkout -b v1.9.1 v.9.1 # 编译
cd build
cmake ..
make # 安装
# sudo make install 先不着急安装,我们来测试一下

测试

1. 先来创建一个测试路径:

mkdir ~/iSoft/fluent-bit -p
mkdir ~/isoft/fluent-bit/bin
mkdir ~/isoft/fluent-bit/conf
mkdir ~/isoft/fluent-bit/db
mkdir ~/isoft/fluent-bit/data
mkdir ~/isoft/fluent-bit/tmp # 先将我们编译路径build下bin子路径内的东西全部复制过去
cp build/bin/* ~/iSoft/fluent-bit/bin/

2. 在conf目录下,创建三个配置文件:

fluent-bit.conf

[SERVICE]
# Flush
# =====
# set an interval of seconds before to flush records to a destination
flush 1 # Daemon
# ======
# instruct Fluent Bit to run in foreground or background mode.
daemon Off # Log_Level
# =========
# Set the verbosity level of the service, values can be:
#
# - error
# - warning
# - info
# - debug
# - trace
#
# by default 'info' is set, that means it includes 'error' and 'warning'.
log_level info # Parsers File
# ============
# specify an optional 'Parsers' configuration file
parsers_file parsers.conf # Plugins File
# ============
# specify an optional 'Plugins' configuration file to load external plugins.
# plugins_file plugins.conf # HTTP Server
# ===========
# Enable/Disable the built-in HTTP Server for metrics
http_server On
http_listen 0.0.0.0
http_port 2020 # Storage
# =======
# Fluent Bit can use memory and filesystem buffering based mechanisms
#
# - https://docs.fluentbit.io/manual/administration/buffering-and-storage
#
# storage metrics
# ---------------
# publish storage pipeline metrics in '/api/v1/storage'. The metrics are
# exported only if the 'http_server' option is enabled.
#
#storage.metrics on # storage.path
# ------------
# absolute file system path to store filesystem data buffers (chunks).
#
# storage.path /tmp/storage # storage.sync
# ------------
# configure the synchronization mode used to store the data into the
# filesystem. It can take the values normal or full.
#
# storage.sync normal # storage.checksum
# ----------------
# enable the data integrity check when writing and reading data from the
# filesystem. The storage layer uses the CRC32 algorithm.
#
# storage.checksum off # storage.backlog.mem_limit
# -------------------------
# if storage.path is set, Fluent Bit will look for data chunks that were
# not delivered and are still in the storage layer, these are called
# backlog data. This option configure a hint of maximum value of memory
# to use when processing these records.
#
# storage.backlog.mem_limit 5M [INPUT]
Name tail
Path /home/etl/iSoft/fluent-bit/data/*.txt
DB /home/etl/iSoft/fluent-bit/db/tail.db [OUTPUT]
Name stdout
Match *

parser.conf

[PARSER]
Name json
Format json
Time_Key time
Time_Format %d/%b/%Y:%H:%M:%S %z%

plugins.conf

这个文件其实暂时还用不上,是为我们自定义扩展插件的配置文件

[PLUGINS]
# Path /path/to/out_gstdout.so

3. 启动fluent-bit

先进入到我们自己创建的tmp目录, 创建一些测试数据

cd ~/iSoft/fluent-bit/tmp

cat <<EOF > test-data.txt
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}
EOF

根据上面fluent-bit.conf配置文件当中的INPUT/OUTPUT可以看出,我们利用了tail组件来监听data目录中的txt文件,并将结果输出到标准输出上来;

所以,启动程序

./fluent-bit -c ../conf/fluent-bit.conf
Fluent Bit v1.9.1
* Git commit: 619277847c6343dea9e4215deacd36cf61caf0a3
* Copyright (C) 2015-2021 The Fluent Bit Authors
* Fluent Bit is a CNCF sub-project under the umbrella of Fluentd
* https://fluentbit.io [2022/03/20 15:23:43] [ info] [engine] started (pid=15543)
[2022/03/20 15:23:43] [ info] [storage] version=1.1.6, initializing...
[2022/03/20 15:23:43] [ info] [storage] in-memory
[2022/03/20 15:23:43] [ info] [storage] normal synchronization mode, checksum disabled, max_chunks_up=128
[2022/03/20 15:23:43] [ info] [cmetrics] version=0.3.0
[2022/03/20 15:23:43] [ info] [output:stdout:stdout.0] worker #0 started
[2022/03/20 15:23:43] [ info] [http_server] listen iface=0.0.0.0 tcp_port=2020
[2022/03/20 15:23:43] [ info] [sp] stream processor started

ok, fluent-bit已经阻塞开始监听了

4. 开始测试

重新开启一个终端创口,进入到创建好的tmp目录,将测试数据手动批量的输出到data目录下:

cd ~/iSoft/fluent-bit/tmp
cat test-data.txt >> ../data/test.txt
cat test-data.txt >> ../data/test.txt
cat test-data.txt >> ../data/test.txt
cat test-data.txt >> ../data/test.txt
cat test-data.txt >> ../data/test.txt
cat test-data.txt >> ../data/test.txt
cat test-data.txt >> ../data/test.txt

这时可以看到fluent-bit阻塞的窗口已经在一直输出了

Fluent Bit v1.9.1
* Git commit: 619277847c6343dea9e4215deacd36cf61caf0a3
* Copyright (C) 2015-2021 The Fluent Bit Authors
* Fluent Bit is a CNCF sub-project under the umbrella of Fluentd
* https://fluentbit.io [2022/03/20 15:23:43] [ info] [engine] started (pid=15543)
[2022/03/20 15:23:43] [ info] [storage] version=1.1.6, initializing...
[2022/03/20 15:23:43] [ info] [storage] in-memory
[2022/03/20 15:23:43] [ info] [storage] normal synchronization mode, checksum disabled, max_chunks_up=128
[2022/03/20 15:23:43] [ info] [cmetrics] version=0.3.0
[2022/03/20 15:23:43] [ info] [output:stdout:stdout.0] worker #0 started
[2022/03/20 15:23:43] [ info] [http_server] listen iface=0.0.0.0 tcp_port=2020
[2022/03/20 15:23:43] [ info] [sp] stream processor started
[2022/03/20 15:23:43] [ info] [input:tail:tail.0] inotify_fs_add(): inode=11409520 watch_fd=1 name=/home/etl/iSoft/fluent-bit/data/test.txt
[0] tail.0: [1647761052.113552720, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[0] tail.0: [1647763863.114999757, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[1] tail.0: [1647763863.403883305, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[0] tail.0: [1647763893.545292283, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[0] tail.0: [1647763954.515264556, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[1] tail.0: [1647763954.515268143, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[2] tail.0: [1647763954.515268725, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[3] tail.0: [1647763954.515269171, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[4] tail.0: [1647763954.515269621, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[5] tail.0: [1647763954.515270065, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[6] tail.0: [1647763954.515270512, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[7] tail.0: [1647763954.515270965, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[8] tail.0: [1647763954.515271452, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]
[9] tail.0: [1647763954.515276040, {"log"=>"{"log":"Done","stream":"stdout","time":"2018-02-19T23:25:29.1845622Z"}"}]

小结

通过上面的配置文件fluent-bit.conf看到,我们为INPUT tail组件,还配置了一个DB参数,那是因为tail组件采用了嵌入式的sqlite3的数据库来记录监听文件的偏移量,我们可以去查看一下:

cd ~/iSoft/fluent-bit/db
sqlite3 tail.db
sqlite> .schema
CREATE TABLE in_tail_files ( id INTEGER PRIMARY KEY, name TEXT NOT NULL, offset INTEGER, inode INTEGER, created INTEGER, rotated INTEGER DEFAULT 0);
sqlite>
sqlite> select * from in_tail_files ;
1|/home/etl/iSoft/fluent-bit/data/test.txt|77520|11409520|1647761023|0
sqlite>

通过字段名称可以看出来,分别是文件全路径名称、读取到的文件偏移量(字节数)、文件inode、文件创建时间、文件滚动标记

监控

根据fluent-bit官网的介绍,我们在上面的配置文档中,将fluent-bit进程的http_server设置为On,并且暴露在2020端口上,那么我们可以使用如下两个接口来查看其输出情况:

curl -s http://127.0.0.1:2020/api/v1/uptime | jq
{
"uptime_sec": 391,
"uptime_hr": "Fluent Bit has been running: 0 day, 0 hour, 6 minutes and 31 seconds"
} curl -s http://127.0.0.1:2020/api/v1/metrics | jq
{
"input": {
"tail.0": {
"records": 1,
"bytes": 88,
"files_opened": 1,
"files_closed": 0,
"files_rotated": 0
}
},
"filter": {},
"output": {
"stdout.0": {
"proc_records": 1,
"proc_bytes": 88,
"errors": 0,
"retries": 0,
"retries_failed": 0,
"dropped_records": 0,
"retried_records": 0
}
}
}

拉取promethues grafana镜像

fluent-bitpromethues提供了监控接口,那么我们来尝试一下:

在本地拉取promethues和grafana的镜像(这里就简单的将这两位泡在容器里)

docker pull prom/prometheus
docker pull grafana/grafana

配置promethues

mkdir ~/isoft/prometheus
vim ~/isoft/prometheus/fluent-bit-prom.yaml

这里为prometheus增加了一个job,因为是运行在docker里面,所以选择了另外一个宿主机IP, 以能否访问运行在宿主机上的fluent-bit

# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s). # Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093 # Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml" # A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: "prometheus" # metrics_path defaults to '/metrics'
# scheme defaults to 'http'. static_configs:
- targets: ["localhost:9090"]
- job_name: "fluent-bit"
metrics_path: '/api/v1/metrics/prometheus' # metrics_path defaults to '/metrics'
# scheme defaults to 'http'. static_configs:
# 宿主机IP
- targets: ["192.168.241.1:2020"]

启动

docker run -d -p 9090:9090 --name prom -v /home/etl/iSoft/prometheus/fluent-bit-prom.yaml:/etc/prometheus/prometheus.yml prom/prometheus

通过浏览器访问 http://localhost:9090/

配置grafana

mkdir ~/isoft/grafana/storage -p
chmod 777 ~/isoft/grafana/storage

启动

docker run -d -p 3000:3000 --name grafana -v /home/etl/iSoft/grafana/storage:/var/lib/grafana grafana/grafana

添加promethues数据源

导入fluent-bit提供的默认dashboard

fluent-bit-dashboard.json

查看监控界面

输入项



输出项

发现资源都叫 tail.0,所以根据文档,将配置文件INPUT/OUTPUT处增加两个别名,以区分可能监控到的多个配置

[INPUT]
Name tail
Path /home/etl/iSoft/fluent-bit/data/*.txt
DB /home/etl/iSoft/fluent-bit/db/tail.db
Alias monitor_txt_file
[OUTPUT]
Name stdout
Match *
Alias output_txt_file

再次查看监控界面

输入项



输出项

总结

至此,先完成初步测试,感兴趣的同学可以持续关注,后续会逐个介绍异构数据处理和发送(尽量多介绍相关组件和场景的使用)、如何使用pipline streaming的窗口SQL统计、为fluent-bit开发扩展组件等功能;

至于windows环境编译较为复杂(需要微软编译环境,我已测试过),感兴趣的同学,可以直接从github下载对应的win版本来进行测试;(我测试是OK的)

1. 使用 fluent-bit 采集文件的更多相关文章

  1. 大数据学习——采集文件到HDFS

    采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs 根据需求,首先定义以下3大要素 l  采集源,即source——监控文件内容更新 :  ...

  2. 04_ Flume采集文件到HDFS案例

    采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs 根据需求,首先定义以下3大要素 采集源,即source——监控文件内容更新 :  ex ...

  3. Flume采集目录及文件到HDFS案例

    采集目录到HDFS 使用flume采集目录需要启动hdfs集群 vi spool-hdfs.conf # Name the components on this agent a1.sources = ...

  4. 第1节 flume:8、flume采集某个文件内容到hdfs上

    2.         采集文件内容到HDFS 需求分析: 采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs. 同一个日志文件的内容不断增 ...

  5. fluent批量处理——模型参数的设置

    对于常见的工程应用来说,计算的工况很多,尤其优化工作,少则几百,多则上千,面对如此之多的case文件要写,假如按照一个一个的读写的话,相信你一定会为这么机械的工作烦躁,甚至影响今后好几天的心情,那么有 ...

  6. flume日志采集

    1.  Log4j Appender 1.1.  使用说明 1.1.2.  Client端Log4j配置文件 (黄色文字为需要配置的内容) log4j.rootLogger=INFO,A1,R # C ...

  7. 日志采集框架Flume以及Flume的安装部署(一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统)

    Flume支持众多的source和sink类型,详细手册可参考官方文档,更多source和sink组件 http://flume.apache.org/FlumeUserGuide.html Flum ...

  8. gambit软件license文件

    最近自己的gambit软件license文件已经到期,后面采用fluent的license文件后,可以使用,但不能导入文件.不过通过努力,终于找到了可以实现导入文件的代码,并且可以实现无限期的使用fl ...

  9. PHP cURL实现模拟登录与采集使用方法详解教程

    来源:http://www.zjmainstay.cn/php-curl 本文将通过案例,整合浏览器工具与PHP程序,教你如何让数据 唾手可得 . 对于做过数据采集的人来说,cURL一定不会陌生.虽然 ...

  10. 【转】iOS 自动化性能采集

      前言 对于iOS总体生态是比较封闭的,相比Android没有像adb这种可以查看内存.cpu的命令.在日常做性能测试,需要借助xcode中instruments查看内存.cpu等数据. 但是借助i ...

随机推荐

  1. vue中使用分页组件、将从数据库中查询出来的数据分页展示(前后端分离SpringBoot+Vue)

    文章目录 1.看实现的效果 2.前端vue页面核心代码 2.1. 表格代码(表格样式可以去elementui组件库直接调用相应的) 2.2.分页组件代码 2.3 .script中的代码 3.后端核心代 ...

  2. 基于YOLO和PSPNet的目标检测与语义分割系统(python)

    基于YOLO和PSPNet的目标检测与语义分割系统 源代码地址 概述 这是我的本科毕业设计 它的主要功能是通过YOLOv5进行目标检测,并使用PSPNet进行语义分割. 本项目YOLOv5部分代码基于 ...

  3. AIR32F103(三) Linux环境基于标准外设库的项目模板

    目录 AIR32F103(一) 合宙AIR32F103CBT6开发板上手报告 AIR32F103(二) Linux环境和LibOpenCM3项目模板 AIR32F103(三) Linux环境基于标准外 ...

  4. 快读《ASP.NET Core技术内幕与项目实战》EFCore2.5:集合查询原理揭秘(IQueryable和IEnumerable)

    本节内容,涉及4.6(P116-P130).主要NuGet包:如前述章节 一.LINQ和EFCore的集合查询扩展方法的区别 1.LINQ和EFCore中的集合查询扩展方法,虽然命名和使用完全一样,都 ...

  5. 空链接的作用以及<a href="#"></a>和<a href="javascript:;"></a>的区别

    空链接的作用以及<a href="#"></a>和<a href="javascript:;"></a>的区别在 ...

  6. 2022春每日一题:Day 11

    题目:高斯消元法 高斯消元法是一个模板,下面简单介绍其内容以及实现方法. 高斯消元是求一个求多元一次方程组的解的算法. 就是形式如下的关于x1,x2...xn的方程组的解. a11x1 + a12x2 ...

  7. SolidEdge ST8安装教程

    SolidEdge ST8安装教程: 1.使用百度云客户端下载Solidedge ST8软件安装包,打开软件安装文件夹: 2.选择.ISO安装文件,打开.ISO安装文件,可以解压或使用虚拟光驱加载: ...

  8. 用最少的代码模拟gRPC四种消息交换模式

    我们知道,建立在HTTP2/3之上的gRPC具有四种基本的通信模式或者消息交换模式(MEP: Message Exchange Pattern),即Unary.Server Stream.Client ...

  9. C温故补缺(六):C反汇编常用的AT&Tx86语法

    C语言反汇编用到的AT&T x86汇编语法 参考:CSDN1,CSDN2 默认gcc -S汇编出的,以及反汇编出的,都是AT&T x86代码,可以用-masm=intel指定为inte ...

  10. xml中出现< >&等特殊字符如何存储

    特殊字符用下面对应得符号代替. < <= > >= & ' " < <= > >= & &apos; "