简要题意

Virtual Judge 传送门 | Codeforces Gym 传送门

给出一个长度为 \(n\) 的序列 \(a\),你需要从中选出一些数,使其两两相加不为质数。输出最大可以选择多少个数。

\(1 \leq n \lt 750,1 \leq a_i \lt 10^7\)

思路

Imakf 学长推荐的题。

首先我们发现,如果对于任意两个数 \(a_i,a_j\),如果 \((a_i+a_j)\in\mathbb{P}\),连边 \((i,j)\)。然后答案就是图的最大独立集。但是一般图最大独立集是 NP-Complete 问题,目前没有多项式时间复杂度解法。

考虑到若 \(a_i,a_j\neq 1\),那么若 \((a_i+a_j)\in\mathbb{P}\),则 \(a_i\bmod 2\neq b_i\bmod 2\)。则若满足上述条件连边,就一定得到的是二分图。

好,然后跑二分图最大匹配,最后将二分图最大匹配转换成二分图最大独立集即可。

等一下,\(a_i=a_j=1\) 的问题我们没有解决,由于如果独立集中有两个及以上 \(1\) 就一定会有质数和出现(\(1+1=2,2\in\mathbb{P}\)),所以我们对值为 \(1\) 的 \(a_i\) 去重即可。

使用匈牙利算法求解二分图最大匹配,时间复杂度均摊 \(O(\max a+n\cdot\frac{n^2}{\log n})\)(这个复杂度是我用素数定理乱算的),理论复杂度上界 \(O(\max a+n^3)\)。可以通过本题。

(思路不难,细节贼多)

代码

#include <bits/stdc++.h>
#define int long long
using namespace std; int pri[20000005];
bool vis[20000005];
int tot; int n,p[800]; struct edge{
int nxt,to;
} g[10000005];
int head[800],ec;
void add(int u,int v){
g[++ec].nxt=head[u];
g[ec].to=v;
head[u]=ec;
} int vist[800],mch[800];
bool hungry(int u,int tag){
if(vist[u]==tag) return false;
vist[u]=tag;
for(int i=head[u];i;i=g[i].nxt){
int v=g[i].to;
if(mch[v]==0||hungry(mch[v],tag)){
mch[v]=u;
return true;
}
}
return false;
} signed main(){
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
cin>>n;
vis[1]=1;vis[0]=1;
for(int i=2;i<=(2e7);i++){
if(!vis[i]){
pri[++tot]=i;
}
for(int j=1;j<=tot&&i*pri[j]<=(2e7);j++){
vis[i*pri[j]]=1;
if(!(i%pri[j]))break;
}
}
for(int i=1;i<=n;i++) cin>>p[i];
sort(p+1,p+n+1, greater<int>());
if(p[n]==1){
while(p[n]==1) n--;
n++;
}
for(int i=1;i<=n;i++){
if(!(p[i]&1)) continue;
for(int j=1;j<=n;j++){
if((p[j]&1)) continue;
if(!vis[p[i]+p[j]]) {
add(i,j);
}
}
}
int ret=0;
for(int i=1;i<=n;i++){
if(hungry(i,i)) ret++;
}
cout<<(n-ret);
}

AC Record on Virtual Judge | Codeforces Gym AC 记录 ID:\(188853866\)

Codeforces Gym 104059B - Breeding Bugs的更多相关文章

  1. Codeforces Gym 101252D&&floyd判圈算法学习笔记

    一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...

  2. Codeforces Gym 101190M Mole Tunnels - 费用流

    题目传送门 传送门 题目大意 $m$只鼹鼠有$n$个巢穴,$n - 1$条长度为$1$的通道将它们连通且第$i(i > 1)$个巢穴与第$\left\lfloor \frac{i}{2}\rig ...

  3. Codeforces Gym 101623A - 动态规划

    题目传送门 传送门 题目大意 给定一个长度为$n$的序列,要求划分成最少的段数,然后将这些段排序使得新序列单调不减. 考虑将相邻的相等的数缩成一个数. 假设没有分成了$n$段,考虑最少能够减少多少划分 ...

  4. 【Codeforces Gym 100725K】Key Insertion

    Codeforces Gym 100725K 题意:给定一个初始全0的序列,然后给\(n\)个查询,每一次调用\(Insert(L_i,i)\),其中\(Insert(L,K)\)表示在第L位插入K, ...

  5. Codeforces gym 101343 J.Husam and the Broken Present 2【状压dp】

     2017 JUST Programming Contest 2.0 题目链接:Codeforces gym 101343 J.Husam and the Broken Present 2 J. Hu ...

  6. codeforces gym 100553I

    codeforces gym 100553I solution 令a[i]表示位置i的船的编号 研究可以发现,应是从中间开始,往两边跳.... 于是就是一个点往两边的最长下降子序列之和减一 魔改树状数 ...

  7. CodeForces Gym 100213F Counterfeit Money

    CodeForces Gym题目页面传送门 有\(1\)个\(n1\times m1\)的字符矩阵\(a\)和\(1\)个\(n2\times m2\)的字符矩阵\(b\),求\(a,b\)的最大公共 ...

  8. Codeforces GYM 100876 J - Buying roads 题解

    Codeforces GYM 100876 J - Buying roads 题解 才不是因为有了图床来测试一下呢,哼( 题意 给你\(N\)个点,\(M\)条带权边的无向图,选出\(K\)条边,使得 ...

  9. codeforces Gym 100187J J. Deck Shuffling dfs

    J. Deck Shuffling Time Limit: 2   Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100187/pro ...

  10. Codeforces Gym 100187K K. Perpetuum Mobile 构造

    K. Perpetuum Mobile Time Limit: 2 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/gym/100187/pro ...

随机推荐

  1. lnmp配置laravel访问环境报错锦集

    1.laravel配置域名访问变成下载,实际就是Nginx没有识别到.php文件.把.php文件的配置加到Nginx即可 .... # 这一段放到项目的Nginx.conf配置文件里面 locatio ...

  2. 题解UVA10948 The primary problem

    前言 前置 \(\sf{Solution}\) 既然有了 \(n\) ,那找出 \(a\) 和 \(b\) 就只要枚举 \(a\) 的范围 \(1\sim n\),判断 \(a\) 和 \(n-a\) ...

  3. pytorch 环境配置

    一.下载Anaconda 二.添加清华镜像 # 添加清华镜像 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anac ...

  4. Java获取/resources目录下的资源文件方法

    Web项目开发中,经常会有一些静态资源,被放置在resources目录下,随项目打包在一起,代码中要使用的时候,通过文件读取的方式,加载并使用: 今天总结整理了九种方式获取resources目录下文件 ...

  5. Redis系列9:Geo 类型赋能亿级地图位置计算

    Redis系列1:深刻理解高性能Redis的本质 Redis系列2:数据持久化提高可用性 Redis系列3:高可用之主从架构 Redis系列4:高可用之Sentinel(哨兵模式) Redis系列5: ...

  6. VS Code插件推荐

    VS Code插件推荐 ​ VS Code作为前端开发人员在学习工作中必不可少的开发软件,其强大的功能以及丰富多样的插件都让开发人员爱不释手.下面推荐个人觉得还不错的几个插件,希望可以帮助到你.如果你 ...

  7. 【网络】内网穿透方案&FRP内网穿透实战(基础版)

    目录 前言 方案 方案1:公网 方案2:第三方内网穿透软件 花生壳 cpolar 方案3:云服务器做反向代理 FRP简介 FRP资源 FRP原理 FRP配置教程之SSH 前期准备 服务器配置 下载FR ...

  8. 第2-3-2章 环境搭建-文件存储服务系统-nginx/fastDFS/minio/阿里云oss/七牛云oss

    目录 5. 文件服务开发 5.1 环境搭建 5.1.1 数据库环境搭建 5.1.2 Nacos环境搭建 5.1.3 Nginx环境搭建 5.1.4 maven工程环境搭建 5. 文件服务开发 全套代码 ...

  9. Pycharm2022.1.3安装教程(包含基础使用配置)

    pycharm的下载安装及使用 以我的Pycharm2022.1.3为例 首先去官网下载professtional(专业版)版本 2022.1.3版本Pycharm软件 https://www.jet ...

  10. 多表查询、Navicat软件、PyMySQL模块

    目录 多表查询.Navicat软件.PyMySQL模块 一.多表查询的两种方法 1.准备工作 2.第一种:连表操作 3.第二种:子查询 总结与结论: 二.多表查询练习题 1.课堂多表查询练习题 2.以 ...