题面传送门

好题。

主要思路和另一位巨佬差不多,详细讲一下判断的部分。

解决思路:

首先考虑本题与拓扑排序有和关系。可以想到,某些棍子的先后移动顺序是有限制的。比如:

这里红色的必须比蓝色的先移动,因为它们在 \(x\) 轴的投影有重叠,蓝色在上,会被红色卡住。

所以,棍子两两之间可能存在限制关系,这就符合拓扑排序的条件了。考虑根据每一对限制关系建边。若 \(u\) 必须比 \(v\) 先移动,就从 \(u\) 向 \(v\) 连边,这样就转化为求拓扑序问题了。


其次,也是较麻烦的一部分,就是如何根据两线段的坐标判断其移动先后限制。

为了方便,在读入时判断并交换好,用 \(x1,y1\) 表示左边端点,\(x2,y2\) 表示左边端点。

\(\text {check}\) 函数,分以下几种情况讨论:

  1. 没有限制关系,返回 \(0\)。
  2. \(u\) 比 \(v\) 要先移动,返回 \(-1\)。
  3. \(v\) 比 \(u\) 要先移动,返回 \(1\)。

为了方便,设 \(u\) 为靠左的线段,若不是,在开始判断前将交换一下,并需要把 \(op\)(返回值)取反。

首先看 \(op=0\),即两线段在 \(x\) 轴上投影不重合:

肉眼可见,\(u.x2<v.x1\),注意等号不可以取到(照提交意思来看...)。

然后看一般情况。多画几个图,可以发现,只需要比较 \(u\) 上 \(x=v.x1\) 时 \(u.y'\) 的值与 \(v.y1\) 的大小 即可(或 \(v\) 上 \(x=u.x2\) 时 \(v.y'\) 的值与 \(u.y2\) 的大小)。在下的先移,在上的后移。

至于如何求函数值。。上过初中数学都会。具体可以看程序,变量名都遵从 \(y=kx+b\) 的基本形式了。

然鹅,这样写获得了 \(95\) 分的高分。哪里出问题了?

还有一种比较坑的情况,就是 \(u\) 是竖直的!

这时候函数 \(u\) 的 \(k\) 是无限大的,不是一次函数,无法求出值。所以需要特判,算出 \(x=u.x1\) 时 \(v\) 的函数值再比较。


Code:

#include<bits/stdc++.h>
using namespace std;
int n,m,in[5005];
struct node{
int x1,x2,y1,y2;
}b[5005];
vector<int> a[5005];
queue<int> q;
int check(node u,node v){ //0:无关,-1:先移u,1:先移v
int op=1;
if(u.x1>v.x1) swap(u,v),op=-op;
if(u.x2<v.x1) return 0;
double K,B,tmp;
if(!(u.x2-u.x1)){
K=1.0*(v.y2-v.y1)/(v.x2-v.x1);
B=(double)v.y1-K*v.x1;
tmp=K*u.x1+B;
if(u.y1>tmp) return op;
return -op;
}
K=1.0*(u.y2-u.y1)/(u.x2-u.x1);
B=(double)u.y1-K*u.x1;
tmp=K*v.x1+B; //求函数
if(tmp>v.y1) return op;
return -op;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d%d%d%d",&b[i].x1,&b[i].y1,&b[i].x2,&b[i].y2);
if(b[i].x1>b[i].x2) swap(b[i].x1,b[i].x2),swap(b[i].y1,b[i].y2);
}
for(int i=1;i<n;i++){
for(int j=i+1;j<=n;j++){
int op=check(b[i],b[j]);
if(op==-1) a[i].push_back(j),in[j]++;
if(op==1) a[j].push_back(i),in[i]++; //连边
}
}
for(int i=1;i<=n;i++) if(!in[i]) q.push(i),printf("%d ",i);
while(q.size()){ //拓扑
int k=q.front();
q.pop();
for(int i=0;i<a[k].size();i++){
int tmp=a[k][i];
in[tmp]--;
if(!in[tmp]) q.push(tmp),printf("%d ",tmp);
}
}
return 0;
}

【题解】P7860 [COCI2015-2016#2] ARTUR的更多相关文章

  1. [COCI]coci2015/2016 nekameleoni

    题意: 初始数列,每个数都在1~k以内 支持两种操作:1.修改一个数,修改后的数在1~k内                           2.查询一个最短包含1~k的序列的长度 查询100000 ...

  2. 题解 「JOISC 2016 Day 3」电报

    题目传送门 题目大意 给出一个\(n\)个点\(n\)条边的图,每个点有且仅有一个出边,改变每条边都会有对应的花费.求最小的花费使得整个图强连通. 思路 很显然,最后的图就是一个环.那我们要求的答案实 ...

  3. 【BZOJ4554】游戏(二分图匹配,网络流)

    [BZOJ4554]游戏(二分图匹配,网络流) 题解 Description 在2016年,佳缘姐姐喜欢上了一款游戏,叫做泡泡堂.简单的说,这个游戏就是在一张地图上放上若干个炸弹,看 是否能炸到对手, ...

  4. HEOI2016解题报告

    树 在2016年,佳媛姐姐刚刚学习了树,非常开心.现在他想解决这样一个问题:给定一颗有根树(根为1),有以下 两种操作:1. 标记操作:对某个结点打上标记(在最开始,只有结点1有标记,其他结点均无标记 ...

  5. bzoj 3165: [Heoi2013]Segment 线段树

    题目: Description 要求在平面直角坐标系下维护两个操作: 在平面上加入一条线段.记第i条被插入的线段的标号为i. 给定一个数k,询问与直线 x = k相交的线段中,交点最靠上的线段的编号. ...

  6. 2016 ACM/ICPC Asia Regional Qingdao Online(2016ACM青岛网络赛部分题解)

    2016 ACM/ICPC Asia Regional Qingdao Online(部分题解) 5878---I Count Two Three http://acm.hdu.edu.cn/show ...

  7. 2016年蓝桥杯B组C/C++决赛题解

    2016年第七届蓝桥杯B组C/C++决赛题解 2016年蓝桥杯B组C/C++决赛题目(不含答案) 1.一步之遥 枚举解方程,或者套模板解线性方程 #include<bits/stdc++.h&g ...

  8. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  9. COGS 2416.[HZOI 2016]公路修建 & COGS 2419.[HZOI 2016]公路修建2 题解

    大意: [HZOI 2016]公路修建 给定一个有n个点和m-1组边的无向连通图,其中每组边都包含一条一级边和一条二级边(连接的顶点相同),同一组边中的一级边权值一定大于等于二级边,另外给出一个数k( ...

随机推荐

  1. 尝试理解Linux容器进程与宿主机共享内核到底是什么意思?

    背景 近期接触容器技术时,经常看到各类比较容器与虚拟机区别的文章中会提到:容器是共享宿主机的内核,而虚拟机则是拥有自己独立的内核,所以不可能在Linux上用容器运行windows,但是用虚拟机则可以. ...

  2. Codeforces Round #604 (Div. 2) -D

    Problem - D - Codeforces 题意 : 有 a 个0,b个1,c个2,d个3,构成一个序列,使得每两个数字之间的差值为1 题解: 就是以四种数字分别为起点,暴力模拟 #includ ...

  3. django_day05

    django_day05 内容回顾 内容回顾 对应关系 类-------表 对象-----数据行 属性------字段 django使用mysql数据库流程 创建一个mysql数据库 在setting ...

  4. 批量修改DNS记录的TTL值

    最近有个需求,需要修改Windows DNS服务器上区域下所有A记录的TTL值.原先默认的TTL是1小时.也就是说,其它DNS服务器会缓存查询到的记录1个小时.对于近期需要大量修改记录的情况来说这样生 ...

  5. 【原创】FFMPEG录屏入门指南

    下载ffmpeg 点击 ffmpeg官网,选择windows,然后点击Windows builds from gyan.dev: 也可以直接点击 https://www.gyan.dev/ffmpeg ...

  6. 重要参考文档---MySQL 8.0.29 使用yum方式安装,开启navicat远程连接,搭建主从,读写分离(需要使用到ProxySQL,此文不讲述这个)

    yum方式安装 echo "删除系统默认或之前可能安装的其他版本的 mysql" for i in $(rpm -qa|grep mysql);do rpm -e $i --nod ...

  7. Logstash & 索引生命周期管理(ILM)

    Grok语法 Grok是通过模式匹配的方式来识别日志中的数据,可以把Grok插件简单理解为升级版本的正则表达式.它拥有更多的模式,默认,Logstash拥有120个模式.如果这些模式不满足我们解析日志 ...

  8. 10_SpringBoot更加详细

    一. 原理初探 1.1 自动装配 1.1.1 pom.xml spring-boot-dependencies: 核心依赖在父工程中 我们在写入或者引入一些SpringBoot依赖的时候, 不需要指定 ...

  9. Linux make编译

    安装问题 linux编译流程 linux开发部分 一般来说著名的linux系统基本上分两大类: RedHat系列:Redhat.Centos.Fedora等 Debian系列:Debian.Ubunt ...

  10. PAT (Basic Level) Practice 1009 说反话 分数 20

    给定一句英语,要求你编写程序,将句中所有单词的顺序颠倒输出. 输入格式: 测试输入包含一个测试用例,在一行内给出总长度不超过 80 的字符串.字符串由若干单词和若干空格组成,其中单词是由英文字母(大小 ...