机器学习实战:用SVD压缩图像
前文我们了解了奇异值分解(SVD)的原理,今天就实战一下,用矩阵的奇异值分解对图片进行压缩.
Learn by doing
我做了一个在线的图像压缩应用,大家可以感受一下。
https://huggingface.co/spaces/beihai/Image-Compression-with-SVD
功能很简单,上传需要压缩的图片,选择压缩比,提交即可。

下面咱们就一起看看实现过程
用SVD压缩图像


原理很简单:
将图片分解为RGB三颜色矩阵,将每个颜色矩阵进行奇异值分解,然后选择指定数量的特征对矩阵进行压缩。
核心代码
完整代码大家可以clone我的huggingface
https://huggingface.co/spaces/beihai/Image-Compression-with-SVD
核心代码1:
p表示奇异值的百分比,根据指定的清晰度提取奇异值清晰度越高,压缩比越低,提取的奇异值的个数也就越多,图片也就越不会失真)
def rebuild_img(u, sigma, v, percent):
m = len(u)
n = len(v)
a = np.zeros((m, n))
count = (int)(sum(sigma))
curSum = 0
k = 0
while curSum <= count * percent:
uk = u[:, k].reshape(m, 1)
vk = v[k].reshape(1, n)
a += sigma[k] * np.dot(uk, vk)
curSum += sigma[k]
k += 1
a[a < 0] = 0
a[a > 255] = 255
核心代码2:
主要就是定义inderence函数和gradio前端的实现
import os
os.system("pip install --upgrade pip")
os.system("pip install opencv-python-headless")
import cv2
import numpy as np
import gradio as gr
from func import rebuild_img
def inference(img,k):
input_img = cv2.imread(img, cv2.IMREAD_COLOR)
u, sigma, v = np.linalg.svd(input_img[:, :, 0])
R = rebuild_img(u, sigma, v, k)
u, sigma, v = np.linalg.svd(input_img[:, :, 1])
G = rebuild_img(u, sigma, v, k)
u, sigma, v = np.linalg.svd(input_img[:, :, 2])
B = rebuild_img(u, sigma, v, k)
restored_img = np.stack((R, G, B), 2)
return Image.fromarray(restored_img[:, :, ::-1])
gr.Interface(
inference,
[
gr.inputs.Image(type="filepath", label="Input"),gr.inputs.Slider(0, 1, 0.1,default=0.6,label= 'Compression ratio')],
gr.outputs.Image(type="pil", label="Output"),
title=title,
description=description,
article=article
).launch(enable_queue=True,cache_examples=True,share=True)
上线
Gradio + Huggingface 上线机器学习应用(纯免费)我已经介绍过很多遍了,这里就不赘述了,还不太熟悉的同学请移步我这篇文章:腾讯的这个算法,我搬到了网上,随便玩!
这里就提一下遇到的小问题及解决方法吧。
由于用了cv2,所以要安装opencv-python,但是运行中报错如下:
File "/home/user/.local/lib/python3.8/site-packages/cv2/__init__.py", line 8, in <module>
from .cv2 import *
ImportError: libGL.so.1: cannot open shared object file: No such file or directory
针对这个错误,网上有以下方法:
1 yum安装:
yum install libglvnd-glx
2 重新安装opencv包:
pip uninstall opencv-python
pip install opencv-python-headless
第一种方法需要root权限,建议直接第二种方法吧,省事。
机器学习实战:用SVD压缩图像的更多相关文章
- 机器学习实战(Machine Learning in Action)学习笔记————10.奇异值分解(SVD)原理、基于协同过滤的推荐引擎、数据降维
关键字:SVD.奇异值分解.降维.基于协同过滤的推荐引擎作者:米仓山下时间:2018-11-3机器学习实战(Machine Learning in Action,@author: Peter Harr ...
- 机器学习实战 - 读书笔记(14) - 利用SVD简化数据
前言 最近在看Peter Harrington写的"机器学习实战",这是我的学习心得,这次是第14章 - 利用SVD简化数据. 这里介绍,机器学习中的降维技术,可简化样品数据. 基 ...
- 《机器学习实战》学习笔记第十四章 —— 利用SVD简化数据
相关博客: 吴恩达机器学习笔记(八) —— 降维与主成分分析法(PCA) <机器学习实战>学习笔记第十三章 —— 利用PCA来简化数据 奇异值分解(SVD)原理与在降维中的应用 机器学习( ...
- 机器学习Python实现 SVD 分解
这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合 不论什么一个矩阵都能够分解为SVD的形式 事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念.先给出p ...
- [机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用
本文先从几何意义上对奇异值分解SVD进行简单介绍,然后分析了特征值分解与奇异值分解的区别与联系,最后用python实现将SVD应用于推荐系统. 1.SVD详解 SVD(singular value d ...
- 《机器学习实战》 in python3.x
机器学习实战这本书是在python2.x的环境下写的,而python3.x中好多函数和2.x中的名称或使用方法都不一样了,因此对原书中的内容需要校正,下面简单的记录一下学习过程中fix的部分 1.pr ...
- 机器学习实战 [Machine learning in action]
内容简介 机器学习是人工智能研究领域中一个极其重要的研究方向,在现今的大数据时代背景下,捕获数据并从中萃取有价值的信息或模式,成为各行业求生存.谋发展的决定性手段,这使得这一过去为分析师和数学家所专属 ...
- Python 机器学习实战 —— 监督学习(上)
前言 近年来AI人工智能成为社会发展趋势,在IT行业引起一波热潮,有关机器学习.深度学习.神经网络等文章多不胜数.从智能家居.自动驾驶.无人机.智能机器人到人造卫星.安防军备,无论是国家级军事设备还是 ...
- Python 机器学习实战 —— 无监督学习(上)
前言 在上篇<Python 机器学习实战 -- 监督学习>介绍了 支持向量机.k近邻.朴素贝叶斯分类 .决策树.决策树集成等多种模型,这篇文章将为大家介绍一下无监督学习的使用.无监督学习顾 ...
随机推荐
- SWAKS伪造邮件发送
一.SWAKS介绍 swaks(SWiss Army Knife Smtp)SMTP瑞士军刀Swaks是由John Jetmore编写和维护的一种功能强大,灵活,可脚本化,面向事务的SMTP测试工具. ...
- 有关电控制图软件EPLAN的安装,下面有破解版本2.7
前段时间刚刚接触这一块,就安装个软件老是出问题,所以我通过自己的努力学会啦,来给正要学习EPLAN的同学发福利啦 15:07:48 安装包发放在百度网盘来自取呀 建议安装我勾选的这个哦 链接:htt ...
- 为什么JVM要用到压缩指针?Java对象要求8字节的整数倍?
前言 前两天在一个帖子中看到一道面试题: 堆内存超过32G时,为什么压缩指针失效? 之前没有了解过这方面的知识,于是开始google起来,但当我翻看了不下一页的帖子,我都仍然没有搞懂,因为好多答案给我 ...
- 如何处理异形屏iphone X?
safe area: 默认放置在安全区域以避免遮挡, 但会压缩 在meta中添加viewport-fit=cover: 告诉浏览器要讲整个页面渲染到浏览器中,不管设备是圆角与否,这个时候会造成页面的元 ...
- 什么是 Mybatis?
1.Mybatis 是一个半 ORM(对象关系映射)框架,它内部封装了 JDBC,开发时 只需要关注 SQL 语句本身,不需要花费精力去处理加载驱动.创建连接.创建 statement 等繁杂的过程. ...
- REST 和RPC对比?
1.RPC主要的缺陷是服务提供方和调用方式之间的依赖太强,需要对每一个微服务进行接口的定义,并通过持续继承发布,严格版本控制才不会出现冲突. 2.REST是轻量级的接口,服务的提供和调用不存在代码之间 ...
- Mybaits 的优点?
1.基于 SQL 语句编程,相当灵活,不会对应用程序或者数据库的现有设计造成任 何影响,SQL 写在 XML 里,解除 sql 与程序代码的耦合,便于统一管理:提供 XML 标签,支持编写动态 SQL ...
- java后台解决上传图片翻转90的问题,有demo,经过测试可用
1.需要加入 依赖 metadata-extractor.jar 依赖如下 <dependencies> <!-- Extracts Exif, IPTC, XMP, ICC and ...
- 攻防世界baby_web
baby_web 题目提示想想初始页,但我们一访问就会跳转到1.php我们使用bp抓包分析,我们发送到repeater模块修改请求访问1.php内容看看 发现flag隐藏了我们去hex中看看 这样我们 ...
- 【Android开发】LogcatView,手机中查看logcat神器
先上图 集成: 1, allprojects { repositories { ... maven { url 'https://www.jitpack.io' } } } 2, dependenci ...