论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》
论文信息
论文标题:Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data
论文作者:Qi Zhu, Natalia Ponomareva, Jiawei Han, Bryan Perozzi
论文来源:2021, NeurIPS
论文地址:download
论文代码:download
1 Introduction
半监督学习通过使用数据之间的关系(即边连接关系,会产生归纳偏差),以及一组带标签的样本,来预测其余部分的标签。
半监督学习存在的问题:训练数据集和测试数据集的数据分布不一致,容易产生 过拟合、泛化性差的问题。当数据集太小或太大,选择一部分带标记的子集进行训练,这类问题就显得比较明显。
具体来说,我们的贡献如下:
1. We provide the first focused discussion on the distributional shift problem in GNNs.
2. We propose generalized framework, Shift-Robust GNN (SR-GNN), which can address shift in both shallow and deep GNNs.
3. We create an experimental framework which allows for creating biased train/test sets for graph learning datasets.
4. We run extensive experiments and analyze the results, proving that our methods can mitigate distributional shift.
2 Related Work
标准学习理论假设训练和推理数据来自相同的分布,但在许多实际情况下,这不成立。在迁移学习中,领域自适应(Domain adaptation)问题涉及将知识从源域(用于学习)转移到目标域(最终的推理分布)。
[3] 作为该领域的开创性工作定义了一个基于模型在 源域 和 目标域 表现的距离度量函数来量化两域的相似性。为获得最终的模型,一个直观的想法是基于源数据和目标数据的加权组合来训练模型,其中权重是域距离的量化函数。
3 Distributional shift in GNNs
SSL 分类器,通常使用交叉熵损失函数 $l$:
$\mathcal{L}=\frac{1}{M} \sum\limits_{i=1}^{M} l\left(y_{i}, z_{i}\right)$
当训练数据和测试数据来自同一域 $\operatorname{Pr}_{\text {train }}(X, Y)=\operatorname{Pr}_{\text {test }}(X, Y)$ 时,训练得到的分类器表现良好。
3.1 Data shift as representation shift
基于标准学习理论的基础假设 $\operatorname{Pr}_{\text {train }}(Y \mid Z)=\operatorname{Pr}_{\text {test }}(Y \mid Z)$,分布位移的主要原因是表示位移,即
$\operatorname{Pr}_{\text {train }}(Z, Y) \neq \operatorname{Pr}_{\text {test }}(Z, Y) \rightarrow \operatorname{Pr}_{\text {train }}(Z) \neq \operatorname{Pr}_{\text {test }}(Z)$
本文关注的是训练数据集和测试数据集表示 $Z$ 之间的分布转移。
为衡量这种变化,可使用 MMD[8] 或 CMD[37] 等差异指标。CMD 测量分布 $\mathrm{p}$ 和 $\mathrm{q}$ 之间的直接距离,如下:
$\mathrm{CMD}=\frac{1}{|b-a|}\|\mathrm{E}(p)-\mathrm{E}(q)\|_{2}+\sum\limits _{k=2}^{\infty} \frac{1}{|b-a|^{k}}\left\|c_{k}(p)-c_{k}(q)\right\|_{2}$
其中
- $c_{k}$ 代表第 $k$ 阶中心矩,通常 $k=5$ ;
- $a$、$b$ 表示这些分布的联合分布支持度;
上式值越大则两域距离越大。
本文定义的 GNNs 为 $H^{k}=\sigma\left(H^{k-1} \theta^{k}\right)$,传统的 GNNs 为 $H^{k}=\sigma\left(\tilde{A} H^{k-1} \theta^{k}\right)$。
传统的 GNNs 由于使用了归一化邻接矩阵,导致产生归纳偏差,从而改变了 表示的分布。所以在半监督学习中 ,由于 图归纳以及采样特征向量的偏移,有便宜的训练样本困难产生较大的性能干扰。
在形式上,对分布位移的分析如下:
Definition 3.1 (Distribution shift in GNNs). Assume node representations $Z=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ are given as an output of the last hidden layer of a graph neural network on graph $G$ with n nodes. Given labeled data $\left\{\left(x_{i}, y_{i}\right)\right\}$ of size $M$ , the labeled node representation $Z_{l}=\left(z_{1}, \ldots, z_{m}\right)$ is a subset of the nodes that are labeled, $Z_{l} \subset Z$ . Assume $Z$ and $Z_{l}$ are drawn from two probability distributions $p$ and $q$. The distribution shift in GNNs is then measured via a distance metric $d\left(Z, Z_{l}\right)$
Figure 1 表明样本偏差导致的分布偏移的影响直接降低了模型的性能。通过使用节点 GCN 模型绘制了三个数据集分布位移距离值( $x$ 轴)和相应的模型精度( $y$ 轴)的关系。

结果表明,GNN 在这些数据集上的节点分类性能与分布位移的大小成反比,并激发了我们对分布位移的研究。
4 Shift-Robust Graph Neural Networks
本节首先提出两种 GNN 模型解决分布位移问题($\operatorname{Pr}_{\text {train }}(Z) \neq \operatorname{Pr}_{\text {test }}(Z)$,然后提出一种通用框架来减少分布位移2问题。
ben
ji
4.1 Scenario 1: Traditional GNN models
传统 GNN 模型 (GCN) $\Phi$ 包含 可学习函数 $\mathbf{F}$ ,参数 $\Theta$ ,邻接矩阵 $A$ :
$\Phi=\mathbf{F}(\Theta, A)$
在 GCN 中,图的归纳偏差在每一层上都是乘法的,并且梯度在所有层中反向传播。最后一层生成的节点表示为:
$Z \equiv Z_{k}=\Phi\left(\Theta, Z_{k-1}, A\right)$, $Z_{k} \in[a, b]^{n}$, $Z_{0}=X$
训练样本 $\left\{x_{i}\right\}_{i=1}^{M}$ 的节点表示为 $Z_{\text {train }}=\left\{z_{i}\right\}_{i=1}^{M}$。对于测试样本,从未标记的数据中抽取一个无偏的 IID 样本集 $X_{\text {IID }}=\left\{x_{i}^{\prime}\right\}_{i=1}^{M}$,并将输出表示为 $Z_{\text {IID }}=\left\{z_{i}^{\prime}\right\}_{i=1}^{M}$。
为减轻训练 和 测试样本之间的分布位移问题,本文提出一个正则化器 $d:[a, b]^{n} \times[a, b]^{n} \rightarrow \mathbb{R}^{+}$ 用于添加到交叉熵损失上。由于 $\Phi$ 是完全可微的,可以使用分布位移度量作为正则化,以直接最小化有偏和无偏的 IID 样本之间的差异:
$\mathcal{L}=\frac{1}{M} \sum_{i} l\left(y_{i}, z_{i}\right)+\lambda \cdot d\left(Z_{\text {train }}, Z_{\text {IID }}\right)$
这里度量分布位移采用 中心力矩差异正则化器(central moment discrepancy regularizer)$d_{\mathrm{CMD}}$:
$d_{\mathrm{CMD}}\left(Z_{\text {train }}, Z_{\mathrm{IID}}\right)=\frac{1}{b-a}\left\|\mathbf{E}\left(Z_{\text {train }}\right)-\mathbf{E}\left(Z_{\mathrm{IID}}\right)\right\|+\sum\limits_{k=2}^{\infty} \frac{1}{|b-a|^{k}}\left\|c_{k}\left(Z_{\text {train }}\right)-c_{k}\left(Z_{\mathrm{IID}}\right)\right\|$
其中,
- $\mathbf{E}(Z)=\frac{1}{M} \sum_{i} z_{i}$;
- $c_{k}(Z)=\mathbf{E}(Z-\mathbf{E}(Z))^{k}$ 是 $k$ 阶中心矩;
4.2 Scenario 2: Linearized GNN Models
线性化GNN模型使用两个不同的函数:一个用于非线性特征变换,另一个用于线性图扩展阶段:
$\Phi=\mathbf{F}_{\mathbf{2}}(\underbrace{\mathbf{F}_{\mathbf{1}}(\mathbf{A})}_{\text {linear function }}, \Theta, X)$
其中,线性函数 $\mathbf{F}_{\mathbf{1}}$ 将图归纳偏差与节点特征相结合,然后交予多层神经网络特征编码器 $\mathbf{F}_{\mathbf{2}}$ 解耦。SimpleGCN[34] 中 $\mathbf{F}_{\mathbf{1}}(A)=A^{k} X$ 。线性化模型的另一个分支 [16,4,36] 采用 personalized pagerank 来预先计算图中的信息扩散 ( $\mathbf{F}_{\mathbf{1}}(A)=\alpha(I-(1-\alpha) \tilde{A})^{-1}$ ),并将其应用于已编码的节点特性 $F(\Theta, X)$。
上述两种模型,图归纳偏差作为线性函数 $\mathbf{F}_{\mathbf{1}}$ 的特征输入。但足够阶段并没有可学习层,所以不能简单使用上述提出的分布正则化器。
在这两种模型中,图归纳偏差作为线性 $\mathbf{F}_{\mathbf{1}}$ 的输入特征提供。不幸的是,由于在这些模型的这个阶段没有可学习的层,所以我们不能简单地应用前一节中提出的分布正则化器。
在这种情况下,可以将训练和测试样本视为来自 $\mathbf{F}_{\mathbf{1}}$ 的行级样本,然后将分布位移 $\operatorname{Pr}_{\text {train }}(Z) \neq \operatorname{Pr}_{\text {test }}(Z)$ 问题转化为匹配训练和测试图的归纳偏差特征空间 $h_{i} \in \mathbb{R}^{n}$。为从训练数据推广到测试数据,可以采用样本加权方案来纠正偏差,这样有偏差的训练样本 $\left\{h_{i}\right\}_{i=1}^{M}$ 将类似于IID样本 $ \left\{h_{i}^{\prime}\right\}_{i=1}^{M}$。由此得到的交叉熵损失为
$\mathcal{L}=\frac{1}{M} \beta_{i} l\left(y_{i}, \Phi\left(h_{i}\right)\right)$
其中,
- $\beta_{i}$ 是每个训练实例的权值;
- $l$ 是交叉熵损失;
然后,通过求解一个 核均值匹配(KMM)[9] 来计算最优 $\beta$:
$\min _{\beta_{i}}\left\|\frac{1}{M} \sum\limits_{i=1}^{M} \beta_{i} \psi\left(h_{i}\right)-\frac{1}{M^{\prime}} \sum\limits_{i=1}^{M^{\prime}} \psi\left(h_{i}^{\prime}\right)\right\|^{2} \text {, s.t. } B_{l} \leq \beta<B_{u}$
$\psi: \mathbb{R}^{n} \rightarrow \mathcal{H}$ 表示由核 $k$ 引入的 reproducing kernel Hilbert space(RKHS) 的特征映射。在实验中,作者使用混合高斯核函数 $k(x, y)=\sum_{\alpha_{i}} \exp \left(\alpha_{i}\|x-y\|_{2}\right)$, $\alpha_{i}=1,0.1,0.01 $。下限 $B_{l}$ 和上限 $B_{u}$ 约束的存在是为了确保大多数样本获得合理的权重,而不是只有少数样本 获得非零权重。
实际的标签空间中有多个类。为了防止 $\beta$ 引起的标签不平衡,进一步要求特定 $c$ 类的 $\beta$ 之和在 校正前后保持相同 $\sum_{i}^{M} \beta_{i} \cdot \mathbb{I}\left(l_{i}=c\right)=\sum_{i}^{M} \mathbb{I}\left(l_{i}=c\right), \forall c$ 。
4.3 Shift-Robust GNN Framework
现在我们提出了 Shift-Robust GNN(SR-GNN)-我们解决GNN中分布转移的一般训练目标:
$\mathcal{L}_{\text {SR-GNN }}=\frac{1}{M} \beta_{i} l\left(y_{i}, \Phi\left(x_{i}, A\right)\right)+\lambda \cdot d\left(Z_{\text {train }}, Z_{\text {IID }}\right)$
该框架由一个用于处理可学习层中的分布转移的正则化组件(第4.1节)和一个实例重加权组件组成,该组件能够处理在特征编码后添加了图归纳偏差的情况(第4.2节)。
现在,我们将讨论我们的框架的一个具体实例,并将该实例应用于APPNP[16]模型。APPNP模型的定义为:
$\Phi_{\text {APPNP }}=\underbrace{\left((1-\alpha)^{k} \tilde{A}^{k}+\alpha \sum\limits_{i=0}^{k-1}(1-\alpha)^{i} \tilde{A}^{i}\right)}_{\text {approximated personalized page rank }} \underbrace{\mathbf{F}(\Theta, X)}_{\text {feature encoder }}$
首先在节点特征 $X$ 上应用特征编码器 $\mathbf{F}$,并线性逼近 personalized pagerank matrix。因此,我们有 $h_{i}=\pi_{i}^{\mathrm{ppr}}$,其中 $\pi_{i}^{\mathrm{ppr}}$ 是个性化的页面向量。为此,我们通过实例加权来减轻由图归纳偏差产生的分布转移。此外,让 $Z=\mathbf{F}(\Theta, X)$ 和我们可以进一步减少非线性网络的分布位移提出的差异正则化器 $d$。在我们的实验中,我们展示了SR-GNN在另外两个具有代表性的GNN模型上的应用:GCN[15]和DGI[32]。
5 Experiments
实验



5 Conclusion
对于半监督学习,考虑表示分布一致性问题。
修改历史
2022-06-24 创建文章
论文解读(SR-GNN)《Shift-Robust GNNs: Overcoming the Limitations of Localized Graph Training Data》的更多相关文章
- 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...
- 论文解读(Graphormer)《Do Transformers Really Perform Bad for Graph Representation?》
论文信息 论文标题:Do Transformers Really Perform Bad for Graph Representation?论文作者:Chengxuan Ying, Tianle Ca ...
- 论文解读(MERIT)《Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning》
论文信息 论文标题:Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning ...
- 论文解读(GraphMAE)《GraphMAE: Self-Supervised Masked Graph Autoencoders》
论文信息 论文标题:GraphMAE: Self-Supervised Masked Graph Autoencoders论文作者:Zhenyu Hou, Xiao Liu, Yukuo Cen, Y ...
- 论文解读(ValidUtil)《Rethinking the Setting of Semi-supervised Learning on Graphs》
论文信息 论文标题:Rethinking the Setting of Semi-supervised Learning on Graphs论文作者:Ziang Li, Ming Ding, Weik ...
- Gaussian field consensus论文解读及MATLAB实现
Gaussian field consensus论文解读及MATLAB实现 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 一.Introduction ...
- 医学AI论文解读 |Circulation|2018| 超声心动图的全自动检测在临床上的应用
文章来自微信公众号:机器学习炼丹术.号主炼丹兄WX:cyx645016617.文章有问题或者想交流的话欢迎- 参考目录: @ 目录 0 论文 1 概述 2 pipeline 3 技术细节 3.1 预处 ...
- 图像分类:CVPR2020论文解读
图像分类:CVPR2020论文解读 Towards Robust Image Classification Using Sequential Attention Models 论文链接:https:// ...
- CVPR2020论文解读:手绘草图卷积网络语义分割
CVPR2020论文解读:手绘草图卷积网络语义分割 Sketch GCN: Semantic Sketch Segmentation with Graph Convolutional Networks ...
随机推荐
- 【.NET6+Modbus】Modbus TCP协议解析、仿真环境以及基于.NET实现基础通信
前言:随着工业化的发展,目前越来越多的开发,从互联网走向传统行业.其中,工业领域也是其中之一,包括各大厂也都在陆陆续续加入工业4.0的进程当中. 工业领域,最核心的基础设施,应该是与下位硬件设备或程序 ...
- MySQL启动过程详解二:核心模块启动 init_server_components()
mysqld_main() 函数中,init_server_components() 函数负责MySQL核心模块的启动,包括mdl系统,Innodb存储引擎的启动等等: 1. mdl子系统初始化. 2 ...
- 字符串/16进制/ASCII码的转换
1 /// <字符串转16进制格式,不够自动前面补零> 2 /// 假设文本框里面填写的是:01 02 03 04 05 06 3 /// Str获取的是01 02 03 04 05 06 ...
- 现代 CSS 解决方案:Modern CSS Reset
在早年间(其实也不是很早),写过几篇关于 CSS Reset 的文章 - reset.css 知多少. 详细描述了当时业界比较常用的,两个 CSS reset 方案:reset.css 与 Norma ...
- 2021.11.10 P5231 [JSOI2012]玄武密码(AC自动机)
2021.11.10 P5231 [JSOI2012]玄武密码(AC自动机) https://www.luogu.com.cn/problem/P5231 题意: 给出字符串S和若干T,求S与每个T的 ...
- Android 蓝牙串口通信工具类 SerialPortUtil 3.0.+
建议使用4.+版本,避免一些不必要的bug.4.+版本文档地址:https://www.cnblogs.com/shanya/articles/16062256.html SerialPortUtil ...
- -2.输入加速(cin,cout)
+ ios::sync_with_stdio(false);//加速几百毫秒 cin.tie(0); // 接近scanf cout.tie(0);
- 新华三Gen10服务器ilo5中刷新bios固件
新华三Gen10服务器ilo5中刷新bios固件. 当前bios1.42 已经是最新了. 固件下载后解压缩. 选择刷新固件. 点击浏览.flash文件. 点击flash 点击ok确认 开始上传 刷新进 ...
- 批量上传文件或者上传大文件时 gateWay报错DataBufferLimitException: Exceeded limit on max bytes to buffer : 262144
一.描述 最近在批量上传文件时网关出现了异常,后面发现上传大文件也会出现文件超过256发生异常,异常信息如下: org.springframework.core.io.buffer.DataBuffe ...
- 伪元素选择器,选择器优先级,CSS修改文字属性,CSS修改字体属性,CSS修改其他属性
伪元素选择器 未使用元素选择器的效果 第一行:伪元素选择器:选择部分内容 第二行:伪元素选择器:选择部分内容 伪元素选择器:选择部分内容 伪元素选择器:选择部分内容 ::selection:选择指定元 ...