原文转载自「刘悦的技术博客」https://v3u.cn/a_id_107

我们知道Tornado 优秀的大并发处理能力得益于它的 web server 从底层开始就自己实现了一整套基于 epoll 的单线程异步架构,其他 web 框架比如Django或者Flask的自带 server 基本是基于 wsgi 写的简单服务器,并没有自己实现底层结构。而tornado.ioloop 就是 tornado web server 最底层的实现。

ioloop 的实现基于 epoll ,那么什么是 epoll? epoll 是Linux内核为处理大批量文件描述符而作了改进的 poll / select 。
那么到底什么是 poll / select ? socket 通信时的服务端,当它接受( accept )一个连接并建立通信后( connection )就进行通信,而此时我们并不知道连接的客户端有没有信息发完。 这时候我们有两种选择:

一直在这里等着直到收发数据结束;

每隔一会儿来看看这里有没有数据;

第一种办法虽然可以解决问题,但我们要注意的是对于一个线程进程同时只能处理一个 socket 通信,其他连接只能被阻塞。 显然这种方式在单进程情况下不现实。

第二种办法要比第一种好一些,多个连接可以统一在一定时间内轮流看一遍里面有没有数据要读写,看上去我们可以处理多个连接了,这个方式就是 poll / select 的解决方案。 看起来似乎解决了问题,但实际上,随着连接越来越多,轮询所花费的时间将越来越长,而服务器连接的 socket 大多不是活跃的,所以轮询所花费的大部分时间将是无用的。为了解决这个问题, epoll 被创造出来,它的概念和 poll 类似,不过每次轮询时,他只会把有数据活跃的 socket 挑出来轮询,这样在有大量连接时轮询就节省了大量时间。

具体说说select:select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被内核修改标志位,使得进程可以获得这些文件描述符从而进行后续的读写操作。

while true {
select(streams[])
for i in streams[] {
if i has data
read until unavailable
}
}

select的优点是支持目前几乎所有的平台,缺点主要有如下2个:

1)单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,不过可以通过修改宏定义甚至重新编译内核的方式提升这一限制。

2)select 所维护的存储大量文件描述符的数据结构,随着文件描述符数量的增大,其复制的开销也线性增长。同时,由于网络响应时间的延迟使得大量TCP连接处于非活跃状态,但调用select()会对所有socket进行一次线性扫描,所以这也浪费了一定的开销。

poll则在1986年诞生于System V Release 3,它和select在本质上没有多大差别,但是poll没有最大文件描述符数量的限制。

epoll是Linux 2.6 开始出现的为处理大批量文件描述符而作了改进的poll,是Linux下多路复用IO接口select/poll的增强版本,它能显著提高程序在大量并发连接中只有少量活跃的情况下的系统CPU利用率。另一点原因就是获取事件的时候,它无须遍历整个被侦听的描述符集,只要遍历那些被内核IO事件异步唤醒而加入Ready队列的描述符集合就行了。
在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。

while true {
active_stream[] = epoll_wait(epollfd)
for i in active_stream[] {
read or write till
}
}

两相对比,可以看出来,epoll只轮询数据活跃的socket,性能自然就比较高了。

而Tornado其实默认是同步阻塞机制的,为了能够实现异步,你就必须使用异步的写法才可以,这里有一个简单的demo:

from  tornado.web import RequestHandler
import tornado.ioloop
import tornado.httpclient
import tornado.web
import requests #异步任务
class AsyncHandler(RequestHandler):
@tornado.web.asynchronous
def get(self):
http_client = tornado.httpclient.AsyncHTTPClient()
http_client.fetch("http://baidu.com",
callback=self.on_fetch) def on_fetch(self, response):
print(response)
self.write('done')
self.finish() #同步任务
class SyncHandler(RequestHandler):
def get(self):
response = requests.get("http://baidu.com")
print(response)
self.write('done') def make_app():
return tornado.web.Application(handlers=[
(r'/async_fetch', AsyncHandler),
(r'/sync_fetch', SyncHandler),
],debug=True) if __name__ == '__main__':
app = make_app()
app.listen(8000)
tornado.ioloop.IOLoop.current().start()

可以看到异步任务我们使用了(回调)和@tornado.web.asynchronous

@tornado.web.asynchronous 并不能将一个同步方法变成异步,所以修饰在同步方法上是无效的,只是告诉框架,这个方法是异步的,且只能适用于HTTP verb方法(get、post、delete、put等)。@tornado.web.asynchronous 装饰器适用于callback-style的异步方法,对于用@tornado.web.asynchronous 修饰的异步方法,需要主动self.finish()来结束该请求,普通的方法(get()等)会自动结束请求在方法返回的时候。

对比下效率:使用ab命令发送500个请求,每秒50个 ab -n 500 -c 50

结果显而易见,异步效率更高,15秒完成了同步需要50秒的任务。

但是,要想达到异步效果,就必须使用异步写法,让io操作变成异步io,而异步写法对于后台研发的综合素质要求比较高,那么能不能用同步的写法达成异步效果呢?当然可以,就是使用celery+tornado

最后总结一下:

Tornado的异步原理: 单线程的torndo打开一个IO事件循环, 当碰到IO请求(新链接进来 或者 调用api获取数据),由于这些IO请求都是非阻塞的IO,都会把这些非阻塞的IO socket 扔到一个socket管理器,所以,这里单线程的CPU只要发起一个网络IO请求,就不用挂起线程等待IO结果,这个单线程的事件继续循环,接受其他请求或者IO操作,如此循环。

说人话:poll/select: 在一个育婴室内,护士会对育婴室内所有的婴儿挨个check一遍,如此往复。epoll:护士会使用高科技设备对婴儿进行监听,并且只会check生命体征有问题(活跃)的婴儿,如此往复。

另外,对于如果面对超高的并发请求(qps上万),仅仅采用 epoll 模型是不够的,我们还必须使用多进程多线程等方式来充分利用系统资源,这就引出了nginx反向代理tornado进行负载均衡

原文转载自「刘悦的技术博客」 https://v3u.cn/a_id_107

关于Tornado5.1:到底是真实的异步和还是虚假的异步的更多相关文章

  1. async/await到底该怎么用?如何理解多线程与异步之间的关系?

    前言 如标题所诉,本文主要是解决是什么,怎么用的问题,然后会说明为什么这么用.因为我发现很多萌新都会对之类的问题产生疑惑,包括我最初的我,网络上的博客大多知识零散,刚开始看相关博文的时候,就这样.然后 ...

  2. C#多线程和异步(三)——一些异步编程模式

    一.任务并行库 任务并行库(Task Parallel Library)是BCL中的一个类库,极大地简化了并行编程,Parallel常用的方法有For/ForEach/Invoke三个静态方法.在C# ...

  3. Python并发编程06 /阻塞、异步调用/同步调用、异步回调函数、线程queue、事件event、协程

    Python并发编程06 /阻塞.异步调用/同步调用.异步回调函数.线程queue.事件event.协程 目录 Python并发编程06 /阻塞.异步调用/同步调用.异步回调函数.线程queue.事件 ...

  4. 异步函数封装请确保异步性(Javascript需要养成的良好习惯)

    背景假设: 你有许多的配置信息存放在服务器上,因为配置太多,不希望每次都把所有的配置信息都写到前端,希望能需要用的时候再获取就好了. 因为Javascript单线程运行,你不希望堵塞ui渲染于是你专门 ...

  5. 深入理解JS异步编程五(脚本异步加载)

    异步脚本加载 阻塞性脚本 JavaScript在浏览器中被解析和执行时具有阻塞的特性,也就是说,当JavaScript代码执行时,页面的解析.渲染以及其他资源的下载都要停下来等待脚本执行完毕 浏览器是 ...

  6. Python 协程/异步IO/Select\Poll\Epoll异步IO与事件驱动

    1 Gevent 协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程:协程是一种用户态的轻量级线程. 协程拥有自己的寄存器上下文和栈.协程调度切换时,将寄存器上下文和栈保存到 ...

  7. C# 异步编程1 APM模式异步程序开发

    C#已有10多年历史,单从微软2年一版的更新进度来看活力异常旺盛,C#中的异步编程也经历了多个版本的演化,从今天起着手写一个系列博文,记录一下C#中的异步编程的发展历程.广告一下:喜欢我文章的朋友,请 ...

  8. 同步请求和异步请求的区别,ajax异步请求如何理解

    同步请求和异步请求的区别 先解释一下同步和异步的概念 同步是指:发送方发出数据后,等接收方发回响应以后才发下一个数据包的通讯方式. 异步是指:发送方发出数据后,不等接收方发回响应,接着发送下个数据包的 ...

  9. C# 异步编程3 TPL Task 异步程序开发

    .Net在Framework4.0中增加了任务并行库,对开发人员来说利用多核多线程CPU环境变得更加简单,TPL正符合我们本系列的技术需求.因TPL涉及内容较多,且本系列文章为异步程序开发,所以本文并 ...

随机推荐

  1. 1903021121-刘明伟-java第七周作业-客户类测试

    项目 内容 课程班级博客链接 19信计班(本) 作业要求链接 作业要求链接 博客名称 1903021121-刘明伟-java第七周作业-客户类测试 要求 每道题要有题目,代码,截图 第一部分: 创建客 ...

  2. vs code 终端字体间距过大(全角的样子)

    文件-首选项-设置 将 terminal.integrated.fontFamily 配置为 Consolas, 'Courier New', monospace 或其他想要的字体,或者点击齿轮按钮重 ...

  3. 每天一个 HTTP 状态码 102

    102 Processing 102 Processing 是用于 WebDAV协议 请求的状态码. 这个状态码表示服务器已经收到了客户端的请求,正在处理,但暂时还没有可接触的响应.可以用于防止客户端 ...

  4. 降维、特征提取与流形学习--非负矩阵分解(NMF)

    非负矩阵分解(NMF)是一种无监督学习算法,目的在于提取有用的特征(可以识别出组合成数据的原始分量),也可以用于降维,通常不用于对数据进行重建或者编码. NMF将每个数据点写成一些分量的加权求和(与P ...

  5. Go中rune类型浅析

    一.字符串简单遍历操作 在很多语言中,字符串都是不可变类型,golang也是. 1.访问字符串字符 如下代码,可以实现访问字符串的单个字符和单个字节 package main import ( &qu ...

  6. .NET C#基础(2):方法修饰符 - 给方法叠buff

    0. 文章目的   本文面向有一定.NET C#基础知识的学习者,介绍C#中的方法修饰符的含义和使用以及注意事项.   1. 阅读基础   理解C#基本语法(如方法声明)   理解OOP基本概念(如多 ...

  7. unittest自动化测试框架核心要素以及应用

    1. unittest核心要素 unittest介绍 测试框架,不仅仅用于单元测试 python自动的测试包 用法和django.test.TestCase类似 1.1.unitest介绍和核心要素 ...

  8. 使用pip安装库或执行pip命令时报错解决方案

    初次安装pip后执行安装升级一般不会有问题,但是国外的镜像源下载升级由于网速过慢会进行报错,提示需要升级 pip 或者下载速度很慢最后直接报了错如下图: 这个时候只需要修改镜像源即可,建议修改为永久镜 ...

  9. ACL权限控制

    ALC讲述比较详细 https://zhuanlan.zhihu.com/p/360158311

  10. Redis之时间轮机制(五)

    一.什么是时间轮 时间轮这个技术其实出来很久了,在kafka.zookeeper等技术中都有时间轮使用的方式. 时间轮是一种高效利用线程资源进行批量化调度的一种调度模型.把大批量的调度任务全部绑定到同 ...