题面

补题链接

7
5 6 7 1 2 3 3

13

5
30 50 10 30 70

8

题解

存在欧拉回路的条件是:1. 每个点的度数都是偶数。2. 有边的连通块最多一个。

数据范围是允许我们

n

2

n^2

n2 枚举的,因此我们看怎么均摊

O

(

1

)

O(1)

O(1) 解决上面的两个判断。

首先,每个点的度数都是偶数。我们预处理两个 0/1 数组,

p

r

e

[

i

]

[

j

]

pre[i][j]

pre[i][j] 表示只考虑前

i

i

i 个数,第

j

j

j 个数向后连边个数取模 2 的结果,

s

u

f

[

i

]

[

j

]

suf[i][j]

suf[i][j] 表示只考虑后

n

i

+

1

n-i+1

n−i+1 个数,第

j

j

j 个数向前连边个数取模 2 的结果。

这两个数组都可以

O

(

n

2

)

O(n^2)

O(n2) 预处理出来,用 bitset 可以省点空间。然后,一个区间

[

l

,

r

]

[l,r]

[l,r] 满足度数需求,当且仅当数列

p

r

e

[

r

]

pre[r]

pre[r] 异或数列

s

u

f

[

l

]

suf[l]

suf[l] 后,

[

l

,

r

]

[l,r]

[l,r] 以内全为 0 。异或后为 0,等价于相等。因此我们分别把

p

r

e

[

r

]

pre[r]

pre[r] 和

s

u

f

[

l

]

suf[l]

suf[l] 的

[

l

,

r

]

[l,r]

[l,r] 区间子序列哈希下来,

O

(

1

)

O(1)

O(1) 比较。安排一下枚举顺序,处理全部可以达到

O

(

n

2

)

O(n^2)

O(n2) 。

第二个条件,不太好办。但是我们可以发现一个规律:

  • 只要存在两条边

    a

    c

    ,

    b

    d

    a-c~,~b-d

    a−c , b−d ,且满足

    a

    <

    b

    <

    c

    <

    d

    a<b<c<d

    a<b<c<d ,那么

    a

    ,

    b

    ,

    c

    ,

    d

    a,b,c,d

    a,b,c,d 一定是连通的。

证明很简单,归纳

b

b

b 和

c

c

c 数字的大小关系,会发现不论如何

a

b

a-b

a−b 和

b

c

b-c

b−c 中有至少一条边存在。

所以,一段区间

[

l

,

r

]

[l,r]

[l,r] 满足第二个条件,当且仅当存在一个分界点

i

[

l

,

r

)

i\in [l,r)

i∈[l,r) ,满足点

i

i

i 前面有边,后面有边,但没有边跨过

i

i

i 和

i

+

1

i+1

i+1 的中间线。

我们固定左端点,右端点往右枚举,大力讨论,维护最靠左的一个最大区间

[

L

,

R

]

[

l

,

r

]

[L,R]\sube [l,r]

[L,R]⊆[l,r] ,满足

[

L

,

R

]

[L,R]

[L,R] 以内都是分界点(暂假设后面都有边)。我们得提前处理出

p

t

[

i

]

[

j

]

pt[i][j]

pt[i][j] ,表示

[

j

,

i

)

[j,i)

[j,i) 以内最靠左的位置,满足与

i

i

i 有边相连,没有则为

+

+\infty

+∞。这个可以

O

(

n

2

)

O(n^2)

O(n2) 预处理。

维护

[

L

,

R

]

[L,R]

[L,R] 讨论如下:当枚举到

r

r

r 时,令

l

f

=

p

t

[

r

]

[

l

]

lf=pt[r][l]

lf=pt[r][l]

  1. l

    f

    >

    r

    lf>r

    lf>r ,若区间为空,且前面出现过边,则赋值

    [

    L

    ,

    R

    ]

    :

    =

    [

    r

    1

    ,

    r

    ]

    [L,R]:=[r-1,r]

    [L,R]:=[r−1,r],否则如果

    R

    =

    r

    1

    R=r-1

    R=r−1 ,则

    R

    :

    =

    R

    +

    1

    R:=R+1

    R:=R+1 。

  2. l

    f

    <

    r

    lf<r

    lf<r ,将右端点

    R

    R

    R 尽量左移,

    R

    :

    =

    min

    (

    R

    ,

    l

    f

    1

    )

    R:=\min(R,lf-1)

    R:=min(R,lf−1) ,此时若

    L

    >

    R

    L>R

    L>R(即区间为空),则赋值

    [

    L

    ,

    R

    ]

    :

    =

    [

    r

    ,

    r

    ]

    [L,R]:=[r,r]

    [L,R]:=[r,r] 。

如果

[

L

,

R

]

[L,R]

[L,R] 为空,或者

R

=

r

R=r

R=r ,则子序列

[

l

,

r

]

[l,r]

[l,r] 满足第二个条件。时间复杂度

O

(

n

2

)

O(n^2)

O(n2) 。

CODE

#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<ctime>
#include<queue>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 8005
#define LL long long
#define DB double
#define ENDL putchar('\n')
#define lowbit(x) (-(x) & (x))
#define FI first
#define SE second
#define SI(x) set<x>::iterator
#define BI bitset<MAXN>
#define eps (1e-9)
LL read() {
LL f=1,x=0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f*x;
}
void putpos(LL x) {
if(!x) return ;
putpos(x/10); putchar('0'+(x%10));
}
void putnum(LL x) {
if(!x) putchar('0');
else if(x < 0) putchar('-'),putpos(-x);
else putpos(x);
}
const int MOD = 998344353;
const int bt = 23;
int n,m,s,o,k;
int a[MAXN];
BI pre[MAXN],suf[MAXN],f1[MAXN];
int pt[MAXN][MAXN];
int hs[MAXN],po[MAXN];
int main() {
n = read();
po[0] = 1;
for(int i = 1;i <= n;i ++) {
a[i] = read();
po[i] = po[i-1] *1ll* bt % MOD;
}
for(int i = 1;i <= n;i ++) {
pt[i][i+1] = n+2;
for(int j = i;j > 0;j --) {
pt[i][j] = pt[i][j+1];
if(a[j] < a[i]) pt[i][j] = j,pre[i][j] = 1;
}
pre[i] ^= pre[i-1];
}
for(int i = n;i > 0;i --) {
for(int j = i;j <= n;j ++) {
if(a[j] > a[i]) {
suf[i][j] = 1;
}
hs[j] = (hs[j] *1ll* bt % MOD + (int)pre[j][i]+2) % MOD;
}
suf[i] ^= suf[i+1];
int has = 0;
for(int j = i;j <= n;j ++) {
(has += ((int)suf[i][j]+2) *1ll* po[j-i] % MOD) %= MOD;
if(has == hs[j]) f1[i][j] = 1;
}
}
int ans = 0;
for(int i = 1;i <= n;i ++) {
int l = n+3,r = n+2;
for(int j = i;j <= n;j ++) {
int lf = pt[j][i];
if(lf > j) {
if(l > r || (l == i-1 && r != j-1)) l = j-1,r = j;
else if(r == j-1) r = j;
}
else {
r = min(r,lf-1);
if(l > r || l == i-1) l = r = j;
}
if(l > r || r == j || l < i) {
ans += (int)f1[i][j];
}
}
}
printf("%d\n",ans);
return 0;
}

后记

好家伙,居然是普及组比赛

3:18:51 过 T3,我还有救吗

学军中学第三届“图灵杯”趣味网络邀请赛——中级T4.欧拉回路 (图论,哈希)的更多相关文章

  1. NOIP2018学军中学游记(11.09~11.11)

    前言 这篇博客记录的是我在\(NOIP2018\)提高组比赛中的经历. 这一次的\(NOIP\)是在学军中学举办的, 莫名感到一阵慌张. 但愿能有一个好成绩,不然就要\(AFO\)了... ... 说 ...

  2. (十三) [终篇] 一起学 Unix 环境高级编程 (APUE) 之 网络 IPC:套接字

    . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...

  3. [从源码学设计]蚂蚁金服SOFARegistry之网络封装和操作

    [从源码学设计]蚂蚁金服SOFARegistry之网络封装和操作 目录 [从源码学设计]蚂蚁金服SOFARegistry之网络封装和操作 0x00 摘要 0x01 业务领域 1.1 SOFARegis ...

  4. 给大一的学弟学妹们培训java web的后台开发讨论班计划

    蓝旭工作室5月大一讨论班课程计划   课时 讨论班性质 讨论班名称 主要内容 主讲人   第一讲 先导课 后台开发工具的使用与MySQL数据库基础 后台开发工具的基本使用方法与工程的创建,MySQL数 ...

  5. Contest1065 - 第四届“图灵杯”NEUQ-ACM程序设计竞赛(个人赛)A蔡老板的会议

    题目描述 图灵杯个人赛就要开始了,蔡老板召集俱乐部各部门的部长开会.综合楼有N (1<=N<=1000)间办公室,编号1~N每个办公室有一个部长在工(mo)作(yu),其中X号是蔡老板的办 ...

  6. 第三届蓝桥杯 c/c++真题

    第三届蓝桥杯真题 c/c++ 以下题目我自己也并不是所有的题目都是一次性就能做对或是有结题思路的.有些题目也是经过查证网上相关的资料或是参考了别人的代码和解题思路才做出来的.总的来看,这份题目考了很多 ...

  7. 11th 回忆整个学期——告学弟学妹

    告诉后来的学弟学妹,不要因为艰难而却步,坚持下去才知道,山的对面是什么.很多东西或许一开始看起来是无用,甚至无意义的,但是努力去做,你才知道价值所在.不要等一切结束了,才懂得自己错过了什么.

  8. 2012年第三届蓝桥杯C/C++程序设计本科B组省赛 取球博弈

    2012年第三届蓝桥杯C/C++程序设计本科B组省赛 取球博弈 题目描述 **取球博弈 今盒子里有n个小球,A.B两人轮流从盒中取球,每个人都可以看到另一个人取了多少个,也可以看到盒中还剩下多少个,并 ...

  9. 2016广东工业大学新生杯决赛网络同步赛暨全国新生邀请赛 题解&源码

    Problem A: pigofzhou的巧克力棒 Description 众所周知,pigofzhou有许多妹子.有一天,pigofzhou得到了一根巧克力棒,他想把这根巧克力棒分给他的妹子们.具体 ...

随机推荐

  1. 腾讯云数据库TDSQL-大咖论道 | 基础软件的过去、现在、未来

    近十年来,中国基础软件发展势头迅猛,市场前景看高,越来越多的企业也正在进行基础软件升级.那中国基础软件行业目前在国际市场上有什么优势,面临哪些困境,以及未来基础软件行业会如何发展呢?腾讯云数据库邀请沙 ...

  2. 我的第一个springboot starter

      在springboot中有很多starter,很多是官方开发的,也有是个人或开源组织开发的.这些starter是用来做什么的呐? 一.认识starter   所谓的starter,在springb ...

  3. docker和docker compose安装使用、入门进阶案例

    一.前言 现在可谓是容器化的时代,云原生的袭来,导致go的崛起,作为一名java开发,现在慌得一批.作为知识储备,小编也是一直学关于docker的东西,还有一些持续继承jenkins. 提到docke ...

  4. flink处理延迟

    flink处理延迟 flink主要是处理实时数据的,在处理实时数据的过程中,难免会遇到乱序的存在.以事件时间举例,先发生的事件后到处理算子.flink针对乱序数据的处理主要有三种方式: 拨慢水位线的生 ...

  5. Vue几行代码实现搜索功能

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. SpringCloud Alibaba整合Sentinel

    SpringCloud Alibaba整合Sentinel Sentinel 控制台 1. 概述 Sentinel 提供一个轻量级的开源控制台,它提供机器发现以及健康情况管理.监控(单机和集群),规则 ...

  7. 快速保存Win10锁屏壁纸,收获美丽瞬间

    对于写程序而言,每天接触得最多的就是电脑了 所以保持一种开放乐观,豁达美丽的心情是十分有必要的 使用"Everything"工具,输入"LocalState\Assets ...

  8. 获取请求体数据 POST

    POST获取请求体 请求体中封装了 POST请求的请求参数 获取流对象 再从流对象中那数据 一种字节流 一种字符流 BufferedReader getReader()获取字符输入流 只能操作字符 S ...

  9. 【前端面试】(四)JavaScript var let const的区别

    视频链接: JavaScript var let const的区别 - Web前端工程师面试题讲解 参考链接: JavaScript 变量 JavaScript Let JavaScript Cons ...

  10. 使用高斯Redis实现二级索引

    摘要:高斯Redis 搭建业务二级索引,低成本,高性能,实现性能与成本的双赢. 本文分享自华为云社区<华为云GaussDB(for Redis)揭秘第21期:使用高斯Redis实现二级索引> ...