C++实现双向RRT算法
C++实现双向RRT算法
背景介绍
RRT(Rapidly-exploring Random Trees)是Steven M. LaValle和James J. Kuffner Jr.提出的一种通过所及构建空间搜索树实现对非凸高维空间快速搜索算法。该算法可以很容易的处理包含障碍和差分运动约束的场景,因此被广泛应用在各种机器人、无人车的运动规划场景中。
双向RRT算法
为了加快随机搜索树规划路径的速度,因此提出了一种新的搜索思路,即从起点和终点同时开始构建随机搜索树,并每次进行判断产生的节点是否满足连接的条件。并在连接条件上添加了转角约束和动态步长策略。
转角约束是用来限制路线的转折角度,避免超过无人车的最大转弯角度。动态步长策略是在产生新节点时用于判断距离障碍物的趋势,动态的调整步长,能够使规划出的路径更加平滑,同时也可加快收敛速度。
C++代码实现如下:
具体代码
头文件
//
// Created by cntia on 2022-10-01.
//
#ifndef RRT_C_RRT_H
#define RRT_C_RRT_H
#include <cmath>
#include <iostream>
using namespace std;
const int RAND_X = 21;
const int RAND_Y = 89;
const double EPS = 1e-6;
struct ListPoint{
double x;
double y;
ListPoint *parent;
ListPoint *next;
ListPoint(): x(0), y(0), parent(nullptr),next(nullptr){}
ListPoint(double x, double y): x(x), y(y), parent(nullptr), next(nullptr){}
};
struct ListObstacle {
double x;
double y;
double r;
ListObstacle *next;
ListObstacle():x(),y(), r(), next(nullptr){}
ListObstacle(double x, double y, double r):x(x),y(y), r(r), next(nullptr){}
};
struct Vector {
double x;
double y;
};
class RT {
private:
ListPoint *one;
ListPoint *two;
ListObstacle *obstacle;
ListPoint *start;
ListPoint *goal;
ListPoint *safe;
ListPoint *recover;
double angle;
double step;
double dist;
/**
* 生成随机点
* @return
*/
static ListPoint* randomPoint();
/**
* 计算向量夹角
* @param vector1
* @param vector2
* @return
*/
double getAngle(Vector vector1, Vector vector2);
/**
* 向搜索树插入实际新节点
* @param t
* @param point
*/
void pushBack(int t,ListPoint *point);
/**
* 查询最近节点
* @param list
* @param point
* @return
*/
ListPoint *getNearestIndexPoint(ListPoint *list, ListPoint *point);
/**
* 查询最近障碍物
* @param point
* @return
*/
ListObstacle *getNearestIndexObstacle(ListPoint *point);
/**
* 计算动态步长
* @param n_point
* @param a_point
* @return
*/
double dynamicStep(ListPoint *n_point, ListPoint * a_point);
/**
* 碰撞检测
* @param t
* @param newPoint
* @return
*/
bool collisionCheck(int t,const ListPoint *newPoint);
/**
* 转角约束检测
* @param newPoint
* @param parentPoint
* @param ancestorPoint
* @return
*/
bool angleCheck(const ListPoint *newPoint, const ListPoint *parentPoint, const ListPoint *ancestorPoint);
/**
* 节点检测
* @param t
* @param newPoint
* @return
*/
bool conditionCheck(int t,const ListPoint *newPoint);
/**
* 平滑连接判断
* @param onePoint
* @param twoPoint
* @return
*/
bool perfectConnect(const ListPoint *onePoint, const ListPoint *twoPoint);
/**
* 实际坐标计算
* @param t
* @param rnd
* @return
*/
ListPoint *coordinate(int t, ListPoint *rnd);
public:
RT(ListPoint *start,ListPoint *goal,ListPoint *safe,ListPoint *recover, double angle,
double step, double dist, ListObstacle *obstacle) : start(start), goal(goal), safe(safe), recover(recover),
angle(angle), step(step),dist(dist),obstacle(obstacle) {
ListPoint *headOne = start;
headOne->next = safe;
safe->parent = headOne;
this->one = headOne;
ListPoint *headTwo = goal;
headTwo->next = recover;
recover->parent = headTwo;
this->two = headTwo;
};
/**
* 路径规划
*/
void planning();
};
#endif //RRT_C_RRT_H
源文件
//
// Created by cntia on 2022-10-01.
//
#include "../headers/RRT.h"
ListPoint *RT::randomPoint() {
double x = (rand() % (RAND_Y - RAND_X + 1)) + RAND_X;
double y = (rand() % (RAND_Y - RAND_X + 1)) + RAND_X;
auto *point = new ListPoint(x, y);
return point;
}
double RT::getAngle(const Vector vector1, const Vector vector2) {
double PI = 3.141592653;
double t = (vector1.x * vector2.x + vector1.y * vector2.y) / (sqrt(pow(vector1.x, 2) + pow(vector1.y, 2)) * sqrt(pow(vector2.x, 2) + pow(vector2.y, 2)));
double angle = acos(t) * (180 / PI);
return angle;
}
void RT::pushBack(int t, ListPoint *point) {
ListPoint *last;
if(t == 1){
last = this->one;
} else {
last = this->two;
}
point->next = nullptr;
while(last->next != nullptr){
last = last->next;
}
last->next = point;
point->parent = last;
}
ListPoint *RT::getNearestIndexPoint(ListPoint *list, ListPoint *point) {
auto *minIndex = new ListPoint;
auto *head = list;
double minD = 1.79769e+308;
double d = 0;
while(head){
d = pow((point->x - head->x), 2) + pow((point->y - head->y), 2);
if(d + EPS < minD){
minD = d;
minIndex = head;
}
head = head->next;
}
return minIndex;
}
ListObstacle *RT::getNearestIndexObstacle(ListPoint *point) {
auto *minIndex = new ListObstacle;
auto *head = this->obstacle;
double minD = 1.79769e+308;
double d = 0;
while(head){
d = sqrt(pow(head->x - point->x, 2) + pow((head->y - point->y), 2)) - head->r;
if(d+EPS<minD){
minD = d;
minIndex = head;
}
head = head->next;
}
return minIndex;
}
double RT::dynamicStep(ListPoint *n_point, ListPoint *a_point) {
double theta = atan2(a_point->y - n_point->y, a_point->x - n_point->x);
a_point->x += cos(theta) * (this->dist + this->step) / 2;
a_point->y += sin(theta) * (this->dist + this->step) / 2;
auto * obstacle = getNearestIndexObstacle(a_point);
double l_n = sqrt(pow(n_point->x-obstacle->x, 2)+pow(n_point->y - obstacle->y, 2)) - obstacle->r;
double dynamic = this->step / (1 + (this->step / this->dist - 1) * exp( -3 * l_n / this->step));
return dynamic;
}
bool RT::collisionCheck(int t,const ListPoint *newPoint) {
bool flag = true;
ListObstacle *head = this->obstacle;
while(head != nullptr){
double dx = head->x - newPoint->x;
double dy = head->y - newPoint->y;
double d = sqrt(pow(dx, 2) + pow(dy, 2));
ListPoint *parentPoint = newPoint->parent;
Vector vector_p_n = {newPoint->x - parentPoint->x, newPoint->y - parentPoint->y};
Vector vector_p_o = {head->x - parentPoint->x, head->y - parentPoint->y};
double d_p_n = abs(sqrt(pow(vector_p_o.x, 2) + pow(vector_p_o.y, 2)) * sin(getAngle(vector_p_n, vector_p_o)));
if(d + EPS < head->r || d_p_n + EPS < head ->r){
flag = false;
break;
}
head = head->next;
}
return flag;
}
bool RT::angleCheck(const ListPoint *newPoint, const ListPoint *parentPoint, const ListPoint *ancestorPoint) {
Vector vector_p_n = {newPoint->x - parentPoint->x, newPoint->y - parentPoint->y};
Vector vector_a_p = {parentPoint->x - ancestorPoint->x, parentPoint->y - ancestorPoint->y};
double angle = getAngle(vector_a_p, vector_p_n);
if(angle+EPS <= this->angle){
return true;
} else{
return false;
}
}
bool RT::conditionCheck(int t,const ListPoint *newPoint) {
if(collisionCheck(t, newPoint)){
ListPoint *parentPoint = newPoint->parent;
if(parentPoint->parent == nullptr){
return false;
}
ListPoint *ancestorPoint = parentPoint->parent;
if(angleCheck(newPoint, parentPoint, ancestorPoint)){
return true;
} else {
return false;
}
} else {
return false;
}
}
bool RT::perfectConnect(const ListPoint *onePoint, const ListPoint *twoPoint) {
ListPoint *oneParent = onePoint->parent;
ListPoint *twoParent = twoPoint->parent;
Vector vector_n_w = {onePoint->x - oneParent->x, onePoint->y - oneParent->y};
Vector vector_w_x = {twoPoint->x - onePoint->x, twoPoint->y - onePoint->y};
Vector vector_x_j = {twoParent->x - twoPoint->x, twoParent->y - twoPoint->x};
double angle_one = getAngle(vector_n_w, vector_w_x);
double angle_two = getAngle(vector_w_x, vector_x_j);
if(angle_one <= this->angle - EPS){
if(fabs(angle_two - 180.0) < EPS || fabs(angle_one - 0.0) < EPS){
return false;
}else{
return true;
}
}else{
return false;
}
}
ListPoint *RT::coordinate(int t, ListPoint *rnd) {
// 寻找最近节点
auto *nearestPoint = new ListPoint;
if(t==1) {
nearestPoint = getNearestIndexPoint(this->one, rnd);
} else {
nearestPoint = getNearestIndexPoint(this->two, rnd);
}
// 按照原始步长计算虚坐标
double theta = atan2(rnd->y - nearestPoint->y, rnd->x - nearestPoint->x);
auto *newPoint = new ListPoint(nearestPoint->x + cos(theta) * this->step, nearestPoint->y + sin(theta) * this->step);
// 使用动态步长计算实际坐标
double actualStep = dynamicStep(nearestPoint, newPoint);
newPoint->x = nearestPoint->x + cos(theta) * actualStep;
newPoint->y = nearestPoint->y + sin(theta) * actualStep;
newPoint->parent = nearestPoint;
return newPoint;
}
void RT::planning() {
while(true){
ListPoint *rnd = randomPoint();
ListPoint *newPoint=coordinate(1, rnd);
if(!conditionCheck(1, newPoint)){
continue;
}
pushBack(1, newPoint);
ListPoint *newPointTwo = coordinate(2, newPoint);
if(!conditionCheck(2, newPointTwo)){
continue;
}
pushBack(2, newPointTwo);
double dx = newPoint->x - newPointTwo->x;
double dy = newPoint->y - newPointTwo->y;
double d = sqrt(pow(dx, 2)+ pow(dy, 2));
if(this-> dist+ EPS < d && d + EPS <this->step){
if(perfectConnect(newPoint, newPointTwo)){
break;
}
else{
continue;
}
}else{
continue;
}
}
ListPoint *tempOne = this->one;
while(tempOne!= nullptr){
cout<<tempOne->x<<" "<<tempOne->y<<endl;
tempOne = tempOne->next;
}
ListPoint *tempTwo = this->two;
while(tempTwo != nullptr){
cout<<tempTwo->x<<" "<<tempTwo->y<<endl;
tempTwo = tempTwo->next;
}
}
主程序
#include "headers//RRT.h"
using namespace std;
const double ANGLE = 60.0;
const double STEP = 10.0;
const double DISTANCE = 5.0;
int main() {
double obstacle_x[]= {50, 50, 50};
double obstacle_y[]= {50, 13, 87};
double obstacle_r[]= {15, 12, 11};
auto * obstacle = new ListObstacle(50, 50, 15);
for(int i = 1; i<3; i++){
auto *node = new ListObstacle;
node->x = obstacle_x[i];
node->y = obstacle_y[i];
node->r = obstacle_r[i];
node->next = obstacle->next;
obstacle->next = node;
}
auto *start = new ListPoint(0, 0);
auto *goal = new ListPoint(100, 100);
auto *safe = new ListPoint(20, 20);
auto *recover = new ListPoint(90, 90);
RT rrt = RT(start, goal, safe, recover, ANGLE, STEP, DISTANCE, obstacle);
rrt.planning();
}
C++实现双向RRT算法的更多相关文章
- PHP实现冒泡排序、双向冒泡排序算法
冒泡排序(Bubble Sort),是一种较简单的.稳定的排序算法.冒泡排序算法步骤:比较相邻的元素,如果第一个比第二个大,就交换他们两个的位置:对每对相邻的元素执行同样的操作,这样一趟下来,最后的元 ...
- Qt 5.11的QChar、QString、QTextBoundaryFinder和双向文本算法现在完全兼容Unicode 10
本文翻译自:Qt 5.11 released 原文作者: Qt公司CTO兼Qt开源项目维护官Lars Knoll翻译校审:Richard.Hongfei.Haipeng 5月22日,我们提发布了Qt ...
- C#汉字转拼音,可识别多音字,带声调,提供正向、逆向、双向分词算法的小程序
用C#写了个汉字转拼音的小工具,和网上大部分工具不同,这个通过分词算法,解决了多音字的问题,并且提供声调,可开可关. 如题,用"银行 行不行 行家说了算"举例,如果转拼音却不能识别 ...
- 基于unity3d的RRT算法路径规划
- 基于R语言的RRT算法效率统计
- Python实现改进后的Bi-RRT算法实例
Python实现改进后的Bi-RRT算法实例 1.背景说明 以下代码是参照上海交通大学海洋工程国家重点实验室<基于改进双向RRT的无人艇局部路径规划算法研究>的算法思想实现的. 2.算法流 ...
- RRT路径规划算法
传统的路径规划算法有人工势场法.模糊规则法.遗传算法.神经网络.模拟退火算法.蚁群优化算法等.但这些方法都需要在一个确定的空间内对障碍物进行建模,计算复杂度与机器人自由度呈指数关系,不适合解决多自由度 ...
- 算法:Astar寻路算法改进,双向A*寻路算法
早前写了一篇关于A*算法的文章:<算法:Astar寻路算法改进> 最近在写个js的UI框架,顺便实现了一个js版本的A*算法,与之前不同的是,该A*算法是个双向A*. 双向A*有什么好处呢 ...
- RRT路径规划算法(matlab实现)
基于快速扩展随机树(RRT / rapidly exploring random tree)的路径规划算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的 ...
随机推荐
- 1.9. 触摸按钮(touch pad)测试
1.9.1. 基础 Esp32部分GPIO内置了touch按钮功能(电容式),具体有touch功能的引脚在配置为touchpad后,单片机读入的电容值随是否被触碰发生变化,系统根据电容值的变化判断判断 ...
- 筛 sigma_k
问题 定义 \(\sigma_k(n)\) 表示 \(n\) 的所有约数的 \(k\) 次方和,即 \[\sigma_k(n)=\sum_{d\mid n}d^k \] 问题:求 \(\sigma_k ...
- 中高级Java程序员,挑战20k+,知识点汇总(一),Java修饰符
1 前言 工作久了就会发现,基础知识忘得差不多了.为了复习下基础的知识,同时为以后找工作做准备,这里简单总结一些常见的可能会被问到的问题. 2 自我介绍 自己根据实际情况发挥就行 3 Java SE ...
- Vue 基本列表 && 数据过滤与排序
1 <!DOCTYPE html> 2 <html> 3 <head> 4 <meta charset="UTF-8" /> 5 & ...
- 解析MySQL存储过程的游标执行过程
GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. 内容提纲 一.测试环境搭建 二.执行过程解析 三.注意事项 一.测试环境搭建 首先创建一张表,并插入几行数据字段: CRE ...
- 故障案例 | 慢SQL引发MySQL高可用切换排查全过程
作者:梁行 万里数据库DBA,擅长数据库性能问题诊断.事务与锁问题的分析等,负责处理客户MySQL日常运维中的问题,对开源数据库相关技术非常感兴趣. GreatSQL社区原创内容未经授权不得随意使用, ...
- Redis 14 发布订阅
参考源 https://www.bilibili.com/video/BV1S54y1R7SB?spm_id_from=333.999.0.0 版本 本文章基于 Redis 6.2.6 概述 Redi ...
- TDM 三部曲 (与 Deep Retrieval)
推荐系统的主要目的是从海量物品库中高效检索用户最感兴趣的物品,既然是"海量",意味着用户基本不可能浏览完所有的物品,所以才需要推荐系统来辅助用户高效获取感兴趣的信息.同样也正是因为 ...
- YC-Framework版本更新:V1.0.9
分布式微服务框架:YC-Framework版本更新V1.0.9!!! 本文主要内容: 1.V1.0.9版本更新主要内容 2.YC-Framework新的征程 一.V1.0.9版本更新主要内容 (1)接 ...
- mybatisplus-sql注入器
sql注入器 使用mybatisplus只需要继承BaseMapper接口即可使用:但是有新的需求需要扩展BaseMapper里面的功能时可使用sql注入器. 扩展BaseMapper里面的功能 点击 ...