LightOj_1342 Aladdin and the Magical Sticks
题意:
地上有n种棍子, 其中有两种类型, 一种类型是可识别, 一种类型是不可识别, 每个棍子都有一个权值。
当你捡到可识别的, 那么你以后就不会再捡这个棍子, 如果是不可识别的, 那么你有可能还会捡。
问将所有棍子收集完的权值的期望。
思路:
此题借鉴参考了此篇文章:Aladdin and the Magical Sticks
首先, 这个题初看起来, 和LightOj 1027 A Dangerous Maze有点像, 只不过, 这里是要将所有的门都走遍。
先引入一个经典的问题:
邮票收集问题(Coupon Collector Problem)WiKi资料
求解邮票收集问题时, 由概率求期望时需要用到几何分布期望, 因此这里给出了几何分布期望的证明过程。 很简洁明了, 还有大量例子结合理解。
通过上面的问题, 我们可以假设, 我们现在面对的是一个n面的骰子, 骰子的每面都是随机出现的(相当于是不可识别的棍子), 求问将所有面都被看完所期望的投掷次数(假设只看最上面那一面)
那么, 问题的解就是:
H[n] = (1 + 1/2 + 1/3 + 1/4 + ... + 1/n), 这就是调和级数的前n项。
这个值近似等于欧拉常数约为:0.57721566490153286060651209。(不过这是一个当n接近无穷时的近似值, 并不能代替具体的H[n], 比如当 n = 1 || 2时)
而所求的是期望的权值, 根据期望的线性性质E(XY) = E(X)*E(Y)
所以, 总的权值期望就等价于 每次的权值期望 * 次数的期望。
n个面, 每个面至少出现一次的期望次数是:E(x) = n * H[n],那么, 某个指定的面至少出现一次的期望次数就是E(z) = E(x)/n = H[n]。
因此, 假设这n个棍子都是不可识别的时候所期望的权值为:
Ea = E(w) * E(x), E(w)为权值的期望 = 权值的平均值。
但是, 这n个棍子里还有一些是可以识别的, 因此还要减去多余的期望。
先来计算一下可识别的棍子所需要的期望的次数, 这个答案为1。
当有六个球在箱子里, 采用不放回抽样, 你将六个球抽出来所期望的次数是多少?这是一个固定的值, 为6。
因此, 每个棍子多出来的部分就是(H[n] - 1) * w[i]。w[i]为某个可识别的棍子的权值。
设, 所有棍子的权值平均值为Wn
假设有k个可识别的棍子, 其权值平均值为Wk
So , 答案为: Ea - Eb = Wn * n * H[n] - k * Wk * (H[n] - 1)
化简: E = (Wn * n - k * Wk) * H[n] + k * Wk。
代码:
#include <cmath>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <ctime>
#include <set>
#include <map>
#include <list>
#include <queue>
#include <string>
#include <vector>
#include <fstream>
#include <iterator>
#include <iostream>
#include <algorithm>
using namespace std;
#define LL long long
#define INF 0x3f3f3f3f
#define MOD 1000000007
#define eps 1e-6
#define MAXN 5050
#define MAXM 100
#define dd cout<<"debug"<<endl
#define pa {system("pause");}
#define p(x) printf("%d\n", x)
#define pd(x) printf("%.7lf\n", x)
#define k(x) printf("Case %d: ", ++x)
#define s(x) scanf("%d", &x)
#define sd(x) scanf("%lf", &x)
#define mes(x, d) memset(x, d, sizeof(x))
#define do(i, x) for(i = 0; i < x; i ++)
#define dod(i, x, l) for(i = x; i >= l; i --)
#define doe(i, x) for(i = 1; i <= x; i ++)
int n;
double h[MAXN];
void init()
{
h[] = ;
for(int i = ; i < MAXN; i ++)
h[i] = h[i - ] + 1.0 / i;
} int main()
{
int T;
int kcase = ;
init();
scanf("%d", &T);
while(T --)
{
scanf("%d", &n);
int a, b;
double ans = ;
for(int i = ; i < n; i ++)
{
scanf("%d %d", &a, &b);
ans += a * (b == ? : h[n]);
}
printf("Case %d: %.5lf\n", ++ kcase, ans);
}
return ;
}
LightOj_1342 Aladdin and the Magical Sticks的更多相关文章
- LightOJ 1342 Aladdin and the Magical Sticks [想法题]
题目链接 : http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=27050 --------------------------- ...
- LightOJ 1342 Aladdin and the Magical Sticks 期望(结论题)
题目传送门 题意:n根木棍,每根木棍都有一个权值,木棍有可识别的木棍和不可识别的木棍,每次抽取木棍时,会累加权值,如果是可识别的木棍就不放回,不可识别的木棍就放回,问每根木棍至少被抽取一次,权值的期望 ...
- KUANGBIN带你飞
KUANGBIN带你飞 全专题整理 https://www.cnblogs.com/slzk/articles/7402292.html 专题一 简单搜索 POJ 1321 棋盘问题 //201 ...
- kuangbin 带你飞 概率期望
正推不行就逆推! 经典问题:生日悖论 换成其互斥事件:m个人, 每个人生日都不相同的概率 ≤ 0.5 时最小人数. 这就是邮票收集问题的变形:每个邮票至少出现一次的概率 小于等于 0.5 邮票收集问题 ...
- [kuangbin带你飞]专题1-23题目清单总结
[kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 Fli ...
- ACM--[kuangbin带你飞]--专题1-23
专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 FliptilePOJ 1426 Find T ...
- Codeforces Round #654 (Div. 2) A~E 题解
LINK:CF R 654 div2 前言:F题是一个线段树分类讨论的题目 比赛的时候没看 赛后感觉没什么意思 所以咕掉了. 记事:第一次笼统的写一场比赛的题目 可能是我这场比赛打的太差了 题目不难 ...
- Codeforces Round #654 (Div. 2)
比赛链接:https://codeforces.com/contest/1371 A. Magical Sticks 题意 有 $n$ 根小棍,长度从 $1$ 到 $n$,每次可以将两根小棍连接起来, ...
- LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...
随机推荐
- android 嵌套 apk 从一个apk启动另外一个apk
a.apk-主应用 b.apk-被启动应用 主要思想:把b.apk放到assets目录下,由于有大小限制(1M),所以改名成b.mp3(因为mp3,jpg,png,mp4等不会检查,不会限制大小), ...
- 分享2D Unity游戏的动画制作经验
作者:Alex Rose Unity近期宣布推出额外的2D游戏支持,加入了Box 2D物理和一个精灵管理器. 但这里还是有些技巧须要牢记在心.逐帧更改图像仅仅是动画制作的冰山一角,若要让你的游戏出色执 ...
- python学习笔记(六)文件夹遍历,异常处理
python学习笔记(六) 文件夹遍历 1.递归遍历 import os allfile = [] def dirList(path): filelist = os.listdir(path) for ...
- linux 安装软件的地方
用下边这个命令:mysqladmin -u root -p variables root是你的数据库帐号回车后会提示你输入密码,输入上边填写的帐号对应的密码 回车后出来一个大表,找到datadir这一 ...
- 分分钟解决iOS开发中App启动广告的功能
前不久有朋友需要一个启动广告的功能,我说网上有挺多的,他说,看的不是很理想.想让我写一个,于是乎,抽空写了一个,代码通俗易懂,简单的封装了一下,各种事件用block回调的,有俩种样式的广告,一种是全屏 ...
- Java泛型方法定义及泛型类型推断
泛型的推断 @Test public void test3(){ //类型推断时使用两个类型的最小公倍数 int x1 = add(3,4); Number x2 = add(3.5,4); Obje ...
- JDK自带方法实现消息摘要运算
啊,有点小注释,懒得介绍了,就贴个代码吧,大意理解就可以了. package jdbc.pro.lin; import java.security.InvalidKeyException; impor ...
- 在Abp框架中使用Mysql数据库的方法以及相关问题小记
最近发现了一款DDD的框架 看起来不错,据说挺流弊的 刚好最近要弄点小东西,拿来试试也不错 苦于穷逼买不起高配服务器,只好装mysql数据库了 下面说下如何在该框架下使用Mysql数据库 打开项目后, ...
- [功能帮助类] 最新的Functions 类 (转载)
代码 using System; using System.Collections.Generic; using System.Text; using System.Security.Cryptogr ...
- js - 在拼接字符串中动态submit当前form
今天在做一个项目的时候, mapabc中的inforWindow中,如果是超链接a,不直接响应. 后来的解决方案是动态产生form,并调用summit方法.如下 自定义一个js函数: function ...