平面曲线的长度:

积分的重要作用体现在处理曲线和曲面。

在这里我们讨论平面中一条用参数形式表达的曲线:x=f(t),y=g(t),a≤t≤b.

如图。

y=f(x)形式的弧长计算:

之前我们讨论过平面笛卡尔系下参数形式的弧长公式,现在对于一般的y=f(x)的形式,我们可以将其等价转化成参数形式:

令x=t,y=f(t),a≤t≤b.

然后再将参数形式带入之前讨论参数形式得到的结论,我们就能够得到如下的定义:

《University Calculus》-chape6-定积分的应用-平面曲线长度的更多相关文章

  1. 《University Calculus》-chaper13-多重积分-二重积分的引入

    这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...

  2. 《University Calculus》-chape6-定积分的应用-求体积

    定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积. 方法1:切片法. 这里 ...

  3. 《University Calculus》-chape10-向量与空间几何学-向量夹角

    点积.向量夹角: 无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢? ...

  4. 《University Calculus》-chape4-极坐标与圆锥曲线-极坐标系下的面积与弧长

    极坐标系下的面积: 在直角坐标系下一样,这里在极坐标系下,我们面临一个同样的问题:如何求解一个曲线围成的面积?虽然两种情况本质上是一样的,但是还是存在一些细小的区别. 在直角坐标系下中,我们是讨论一条 ...

  5. 《University Calculus》-chape12-偏导数-基本概念

    偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...

  6. 《University Calculus》-chape5-积分法-微积分基本定理

    定积分中值定理: 积分自身的定义是简单的,但是在教学过程中人们往往记得的只是它的计算方法,在引入积分的概念的时候,往往就将其与计算方法紧密的捆绑在一起,实际上,在积分简单的定义之下,微积分基本定理告诉 ...

  7. 《University Calculus》-chape10-向量和空间几何学-叉积

    叉积概念的引入: 在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念.而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核 ...

  8. 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

    写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...

  9. 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

    基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.

随机推荐

  1. 正则表达式-delphi

    一.工具选择 在 Delphi 中使用正则表达式, 目前 PerlRegEx 应该是首选, 准备彻底而细致地研究它. 官方网站: http://www.regular-e­xpressions.inf ...

  2. TUXEDO管理命令总结

    tmboot  启动服务: 参数说明: -l  lmid 启动逻辑服务器名为lmcd服务器上的所有进程 -g grpname 启动GROUP名为grpname的所有进程 -i  srvid 启动SRV ...

  3. IOS-UIScrollView实现图片分页

    1.设置可以分页 _scrollView.pagingEnabled = YES; 2.添加PageControl UIPageControl *pageControl = [[UIPageContr ...

  4. C# DataTable的詳細用法 - hcw_peter的专栏 - 博客频道 - CSDN

    C# DataTable的詳細用法 - hcw_peter的专栏 - 博客频道 - CSDN.NET 在项目中经常用到DataTable,如果DataTable使用得当,不仅能使程序简洁实用,而且能够 ...

  5. etTimeout与setInterval方法的区别

    etTimeout与setInterval方法的区别 setTimeout()用于设定在指定的时间之后执行对应的函数或代码.,在全局作用域下执行 setTimeout(code,time[,args… ...

  6. ecshop标签

    页面标题         {$page_title}页面关键字       {$keywords}     产品分类                 父分类列表 {foreach from=$cate ...

  7. php Imagick库readImage()报Postscript delegate failed 解决方法(失效)

    需要安装 ghostscript http://www.ghostscript.com/download/gsdnld.html

  8. Android Linux自带iptables配置IP访问规则

    利用Linux自带iptables配置IP访问规则,即可做到防火墙效果

  9. opencv 构造训练器

    D:/face   构造face训练器为例 一:样本创建 训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片. 负样本可以来自于任意的图片,但这些图片不能包含目标特征 ...

  10. linux下VI编辑器的使用

    一.VI编辑器简述       VI 编辑器是Linux和Unix上最基本的文本编辑器,工作在字符模式下.由于不需要图形界面,使它成了效率很高的文本编辑器.尽管在Linux上也有很多图形界面的编辑器可 ...