Miller_Rabin codevs 1702 素数判定2
/*
直接费马小定理
*/
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#define ll long long
using namespace std;
ll slow_mul(ll a,ll b,ll c)
{
ll ans=;
a=a%c;b=b%c;
while(b)
{
if(b&)
{
b--;
ans+=a;
ans%=c;
}
a<<=;a%=c;b>>=;
}
return ans;
}
ll Mi(ll p,ll a,ll mod)
{
if(p==)return ;
ll x=Mi(p/,a,mod)%mod;
x=slow_mul(x,x,mod);
if(p%==)x=slow_mul(x,a,mod);
return x;
}
int main()
{
srand(unsigned(time()));
ll p,d,a;
cin>>p;
int falg=;
if(p==)
{
printf("Yes");
return ;
}
if(p==)
{
printf("No");
return ;
}
for(int i=;i<=;i++)
{
a=rand()%(p-)+;
d=Mi(p-,a,p);
if(d!=)
{
falg=;
break;
}
else falg=;
}
if(falg==)printf("Yes");
else printf("No");
}
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<ctime>
#define ll long long
#define T 10
using namespace std;
ll slow_mul(ll a,ll b,ll c)//防止爆掉
{
ll ans=;
a=a%c;b=b%c;
while(b)
{
if(b&)
{
b--;ans+=a;
ans=ans%c;
}
a=a<<;a=a%c;
b=b>>;
}
return ans;
}
ll Mi(ll a,ll m,ll n)//快速幂 a^m%n
{
if(m==)return ;
ll x=Mi(a,m/,n)%n;
x=slow_mul(x,x,n);
if(m%==)x=slow_mul(x,a,n);
return x;
}
bool Miller_Rabin(ll n)
{
if(n<)return ;
if(n==)return ;
if(n%==)return ;
ll m=n-,j=;
while(m%==)//计算m j 使得n-1=m*2^j且j尽量大
{
j++;
m >>=;
}
srand(unsigned(time()));
for(int i=;i<=T;i++)//T次测试
{
ll a=rand()%(n-)+;
ll x=Mi(a,m,n);//计算a^m%n
ll y;
for(int k=;k<=j;k++)
{
y=slow_mul(x,x,n);
if(y==&&x!=&&x!=n-)return ;//一定不是素数
x=y;
}
if(x!=)return ;//不符合费马小定理
}
return ;
}
int main()
{
ll n;
cin>>n;
if(Miller_Rabin(n))printf("Yes\n");
else printf("No\n");
}
Miller_Rabin codevs 1702 素数判定2的更多相关文章
- Miller-Rabin算法 codevs 1702 素数判定 2
转载自:http://www.dxmtb.com/blog/miller-rabbin/ 普通的素数测试我们有O(√ n)的试除算法.事实上,我们有O(slog³n)的算法. 定理一:假如p是质数,且 ...
- Codevs 1702 素数判定 2(Fermat定理)
1702 素数判定 2 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 传送门 题目描述 Description 一个数,他是素数么? 设他为P满足(P< ...
- codevs 1702素数判定2
Miller-Rabin算法实现,但是一直被判题程序搞,输入9999999999得到的结果分明是正确的但是一直说我错 #include <cstdio> #include <cmat ...
- codevs——1430 素数判定
1430 素数判定 时间限制: 1 s 空间限制: 1000 KB 题目等级 : 青铜 Bronze 题解 题目描述 Description 质数又称素数.指在一个大于1的自然数中, ...
- 数学#素数判定Miller_Rabin+大数因数分解Pollard_rho算法 POJ 1811&2429
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: h ...
- 10^9以上素数判定,Miller_Rabin算法
#include<iostream> #include<cstdio> #include<ctime> #include<string.h> #incl ...
- Miller_Rabin()算法素数判定 +ollard_rho 算法进行质因数分解
//****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以 ...
- 【数论】【素数判定】CODEVS 2851 菜菜买气球
素数判定模板. #include<cstdio> #include<map> using namespace std; ],ans=-,l,r,n,sum[]; bool is ...
- FZU 1649 Prime number or not米勒拉宾大素数判定方法。
C - Prime number or not Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & % ...
随机推荐
- Shell 控制并发
方法1: #!/bin/bash c=0 for i in `seq -w 18 31`;do while [ $c -ge 3 ];do c=$(jobs -p |wc -w) sleep 1s d ...
- 抽象数据类型Triplet的C语言实现
#include <stdio.h> #include <stdlib.h> #define ERROR 0 #define OK 1 typedef int Status; ...
- STM32学习笔记——USART串口(向原子哥和火哥学习)
一.USART简介 通用同步异步收发器(USART)提供了一种灵活的方法与使用工业标准NRZ异步串行数据格式的外部设备之间进行全双工数据交换.USART利用分数波特率发生器提供宽范围的波特率选择. S ...
- UIControl-IOS开发
UIControl-IOS开发 UIKit提供了一组控件:UISwitch开关.UIButton按钮.UISegmentedControl分段控件.UISlider滑块.UITextField文本 ...
- gulp配置browserify多入口
需要 var es = require('event-stream'); gulp.task('browserify', function(){ var files = [ { fpath: './j ...
- How to solve "The specified service has been marked for deletion" error
There may be several causes which lead to the service being stuck in “marked for deletion”. Microsof ...
- Dungeon Master
poj2251:http://poj.org/problem?id=2251 题意:给你一个三维的立方体,然后给你一个起点,和终点的坐标.然后让你求从起点到终点的最短路程.题解:该题就是求三维的最短路 ...
- 非主窗体在任务栏显示按钮(简单好用)good
非主窗体在任务栏显示按钮 type TForm2 = class(TForm) private { Private declarations } public { Public declaration ...
- SpringMvc配置 导致实事务失效
SpringMVC回归MVC本质,简简单单的Restful式函数,没有任何基类之后,应该是传统Request-Response框架中最好用的了. Tips 1.事务失效的惨案 Spring MVC最打 ...
- Bull And Cows
package cn.edu.xidian.sselab.hashtable; import java.util.HashMap;import java.util.Map;import java.ut ...