NOIP2015 提高组(senior) 解题报告
过了这么久才来发解题报告,蒟蒻实在惭愧 /w\
Day1 T1
【思路】
模拟
【代码】
#include<iostream>
#include<cstring>
#include<queue>
#include<cmath>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int maxn = ; int G[maxn][maxn];
int n,m; int main() {
cin>>n;
int r=,c=n/+;
G[r][c]=;
FOR(i,,n*n) {
if((r==)&&(c!=n)) {
r=n; c++;
G[r][c]=i;
}
else if(c==n&&r!=) {
c=; r--;
G[r][c]=i;
}
else if(r== && c==n) {
r++;
G[r][c]=i;
}
else if(r!= && c!=n) {
if(!G[r-][c+]) {
r--; c++;
G[r][c]=i;
}
else {
r++;
G[r][c]=i;
}
}
}
FOR(i,,n) {
FOR(j,,n) cout<<G[i][j]<<" ";
cout<<endl;
}
return ;
}
magic
Day1 T2
【思路】
Dfs,如果遇到已经访问的点则构成环更新ans
【代码】
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int maxn = +;
struct Edge{
int v,next;
}e[maxn*];
int en=-,front[maxn]; int d[maxn];
int n,ans=1e9;
int vis[maxn]; void AddEdge(int u,int v) {
en++; e[en].v=v; e[en].next=front[u]; front[u]=en;
} void dfs(int u,int fa){
for(int i=front[u];i>=;i=e[i].next) {
int v=e[i].v;
if(v!=fa)
{
if(vis[v]) {
ans=min(ans,abs(d[v]-d[u])+);
}
else {
vis[v]=;
d[v]=d[u]+;
dfs(v,u);
}
}
}
}
int read() {
char c=getchar();
while(!isdigit(c)) c=getchar();
int x=;
while(isdigit(c)) {
x=x*+c-'';
c=getchar();
}
return x;
} int main() {
memset(front,-,sizeof(front));
n=read();
int j;
FOR(i,,n) {
j=read();
AddEdge(i,j);
AddEdge(j,i);
}
FOR(i,,n) if(!vis[i]) {
vis[i]=;
dfs(i,-);
}
printf("%d",ans);
return ;
}
message
Day1 T3
【思路】
搜索+剪枝
忽略花色,统计每种码数出现次数方便出牌。
每次都先出顺子,对于手中剩下的牌我们贪心地将剩下的组合牌需要打的次数计算出来,然后更新ans以剪枝。
双王算作对牌。顺排不包括2和双王。
【代码】
#include<cstdio>
#include<cstring>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int N = ; int a[N],c[N];
int n,T,ans; int Qans() {
memset(c,,sizeof(c));
FOR(i,,) c[a[i]]++;
int tot=; //tot带牌
while(c[]&&c[]>) c[]--,c[]-=,tot++;
while(c[]&&c[]>) c[]--,c[]-=,tot++;
while(c[]&&c[]) c[]--,c[]--,tot++;
while(c[]&&c[]) c[]--,c[]--,tot++;
while(c[]&&c[]) c[]--,c[]--,tot++;
return tot+c[]+c[]+c[]+c[]; //带牌+三张 对子 单张
} void dfs(int now) {
if(now>=ans) return ;
int tmp=Qans();
if(now+tmp<ans) ans=now+tmp;
FOR(i,,) { //三顺子
int j=i;
while(a[j]>=) j++;
if(j-i>=) {
FOR(j2,i+,j-) {
FOR(k,i,j2) a[k]-=;
dfs(now+);
FOR(k,i,j2) a[k]+=;
}
}
}
FOR(i,,) { //双顺子
int j=i;
while(a[j]>=) j++;
if(j-i>=) {
FOR(j2,i+,j-) {
FOR(k,i,j2) a[k]-=;
dfs(now+);
FOR(k,i,j2) a[k]+=;
}
}
}
FOR(i,,) { //单顺子
int j=i;
while(a[j]>=) j++;
if(j-i>=) {
FOR(j2,i+,j-) {
FOR(k,i,j2) a[k]--;
dfs(now+);
FOR(k,i,j2) a[k]++;
}
}
}
} int main() {
//freopen("in.in","r",stdin);
//freopen("out.out","w",stdout);
scanf("%d%d",&T,&n);
while(T--) {
memset(a,,sizeof(a));
int x,y;
FOR(i,,n) {
scanf("%d%d",&x,&y);
if(x==) x=; else if(x) x--;
a[x]++;
}
ans=1e9;
dfs();
printf("%d\n",ans);
}
return ;
}
landlords
Day2 T1
【思路】
二分法
【代码】
#include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<cmath>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int maxn = +; int d[maxn];
int n,m,len; bool can(int M) {
int last=,cur=;
FOR(i,,m) {
while(cur<=n && d[cur]-last<M) cur++;
if(d[cur]-last<M || (cur>n)) return false;
last=d[cur];
}
return true;
} int main() {
cin>>len>>n>>m;
m=n-m;
FOR(i,,n) cin>>d[i];
int L=,R=len;
while(L<R){
int M=L+(R-L+)/;
if(can(M)) L=M;
else R=M-;
}
cout<<L;
return ;
}
stone
Day2 T2
【思路】
DP+优化
设f[k][i][j]为已经有k段,A串匹配到i,B匹配到j的方案数,则有转移式:
f[k][i][j]=sigma{f[k-1][l][j-1]},A[i]==B[j]&&A[i-1]!=B[j-1]
= sigma{f[k-1][l][j-1]}+f[k][i-1][j-1],A[i]==B[j]&&A[i-1]==B[j-1]
前缀和优化时间,滚动数组优化空间。
【代码】
#include<cstdio>
#include<cstring>
using namespace std; const int N = 1e3+;
const int M = +;
const int MOD = 1e9+; int f[][N][M],sum[][N][M],n,m,K;
char s1[N],s2[M]; int main() {
scanf("%d%d%d",&n,&m,&K);
scanf("%s",s1+),scanf("%s",s2+);
f[][][]=;
for(int i=;i<=n;i++) sum[][i][]=;
int x=;
for(int k=;k<=K;k++) {
x^=;
memset(sum[x],,sizeof(sum[x]));
memset(f[x],,sizeof(f[x]));
for(int i=;i<=n;i++)
for(int j=;j<=m;j++) {
if(s1[i]==s2[j]) {
f[x][i][j]=sum[x^][i-][j-];
if(s1[i-]==s2[j-]) f[x][i][j]=(f[x][i][j]+f[x][i-][j-])%MOD;
}
sum[x][i][j]=((sum[x][i][j]+sum[x][i-][j])%MOD+f[x][i][j])%MOD;
}
}
int ans=;
for(int i=;i<=n;i++)
ans=(ans+f[x][i][m])%MOD;
printf("%d",ans);
return ;
}
substring
Day2 T3
【思路】
二分+LCA+差分
先求出所有查询的路长,时间为O(mlogn)。题目所求为修改后的最大查询路最小,考虑二分该最大路值ML。对于所有长度超过ML的路径求交,记录最大查询路为mx,只要我们求出这些路径的最大公共边(交)mxe,通过判断mx-mxe与ML就可调整区间。
如何求交? 差分。所谓差分就是将一个对区间的操作变为对区间端点的操作。将查分推广到树上。每个结点带个cnt,对于路径(u,v),cnt[u]++,cnt[v]++,cnt[lca(u,v)]-=2,在树上统计cnt[x]=sigma{cnt[son]},这样只要满足cnt[x]==1的边就在这条路上,满足cnt[x]==tot的边就在路径的交上。
总的时间为O(mlogn+(m+n)logL)
【代码】
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define FOR(a,b,c) for(int a=(b);a<=(c);a++)
using namespace std; const int N = *1e5+;
struct Edge{ int v,w; }; int n,m;
int u[N],v[N],w[N],lca[N],dist[N],val[N];
vector<Edge> g[N]; void read(int& x) {
char c=getchar(); int f=; x=;
while(!isdigit(c)) {if(c=='-')f=-; c=getchar();}
while(isdigit(c)) x=x*+c-'',c=getchar();
x*=f;
} int siz[N],fa[N],son[N],top[N],dep[N],dis[N];
void dfs1(int u) {
siz[u]=; son[u]=;
for(int i=;i<g[u].size();i++) {
int v=g[u][i].v;
if(v!=fa[u]) {
fa[v]=u; dep[v]=dep[u]+;
dis[v]=dis[u]+g[u][i].w;
dfs1(v);
siz[u]+=siz[v];
if(siz[v]>siz[son[u]]) son[u]=v;
}
}
}
void dfs2(int u,int tp) {
top[u]=tp;
if(son[u]) dfs2(son[u],tp);
for(int i=;i<g[u].size();i++) {
int v=g[u][i].v;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
}
int LCA(int u,int v) {
while(top[u]!=top[v]) {
if(dep[top[u]]<dep[top[v]]) swap(u,v);
u=fa[top[u]];
}
return dep[u]<dep[v]? u:v;
} int tot,mx,mxe,cnt[N];
int find_mxe(int u) {
for(int i=;i<g[u].size();i++) {
int v=g[u][i].v;
if(v!=fa[u]) cnt[u]+=find_mxe(v);
}
if(cnt[u]==tot) mxe=max(mxe,val[u]);
int tmp=cnt[u]; cnt[u]=;
return tmp;
}
bool can(int ML) {
tot=; mx=mxe=;
FOR(i,,m) if(dist[i]>ML){
tot++; mx=max(mx,dist[i]);
cnt[u[i]]++,cnt[v[i]]++,cnt[lca[i]]-=;
}
find_mxe();
return mx-mxe<=ML;
} int main() {
freopen("transport.in","r",stdin);
freopen("transport.out","w",stdout);
read(n),read(m);
FOR(i,,n-) {
read(u[i]),read(v[i]),read(w[i]);
g[u[i]].push_back((Edge){v[i],w[i]});
g[v[i]].push_back((Edge){u[i],w[i]});
}
dfs1(),dfs2(,);
FOR(i,,n-) {
if(dep[u[i]]<dep[v[i]]) swap(u[i],v[i]);
val[u[i]]=w[i];
}
int x,y,L=,R=,M;
FOR(i,,m) {
read(x),read(y);
dist[i]=dis[x]+dis[y]-*dis[lca[i]=LCA(x,y)];
R=max(R,dist[i]); u[i]=x,v[i]=y;
}
R++;
while(L<R) {
M=(L+R)>>;
if(can(M)) R=M; else L=M+;
}
printf("%d",L);
return ;
}
transport
NOIP2015 所涉及到的知识有:模拟,二分法,搜索及优化,DP及优化,LCA
PS:Day1 T2 和 Day2 T3在部分OJ会栈溢出
NOIP2015 提高组(senior) 解题报告的更多相关文章
- noip2015提高组day2解题报告
1.跳石头 题目描述 一年一度的“跳石头”比赛又要开始了! 这项比赛将在一条笔直的河道中进行,河道中分布着一些巨大岩石.组委会已经选择好了两块岩石作为比赛起点和终点.在起点和终点之间,有 N 块岩石( ...
- 【NOIP2015】提高组D1 解题报告
P1978神奇的幻方 Accepted 描述 幻方是一种很神奇的 N ∗ N 矩阵:它由数字 1,2,3, … … , N ∗ N 构成,且每行.每列及两条对角线上的数字之和都相同. 当 N 为奇数时 ...
- 【未完成0.0】Noip2012提高组day2 解题报告
第一次写一套题的解题报告,感觉会比较长.(更新中Loading....):) 题目: 第一题:同余方程 描述 求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解. 格式 输入格式 输入只有一 ...
- NOIP 2018 提高组初赛解题报告
单项选择题: D 进制转换题,送分: D 计算机常识题,Python是解释运行的: B 常识题,1984年小平爷爷曰:“娃娃抓起”: A 数据结构常识题,带进去两个数据就可以选出来: D 历年真题没有 ...
- NOIP2015 普及组(Junior) 解题报告
1. 金币 (coin.cpp/c/pas) 国王将金币作为工资,发放给忠诚的骑士.第一天,骑士收到一枚金币:之后两天(第二天和第三天),每天收到两枚金币:之后三天(第四.五.六天),每天收到三枚金币 ...
- NOIP2018提高组Day1 解题报告
前言 关于\(NOIP2018\),详见此博客:NOIP2018学军中学游记(11.09~11.11). 这次\(NOIP\ Day1\)的题目听说很简单(毕竟是三道原题),然而我\(T3\)依然悲剧 ...
- NOIP2018提高组Day2 解题报告
前言 关于\(NOIP2018\),详见此博客:NOIP2018学军中学游记(11.09~11.11). \(Day2\)的题目和\(Day1\)比起来,真的是难了很多啊. \(T1\):旅行(点此看 ...
- 牛客NOIP暑期七天营-提高组1 解题报告
https://ac.nowcoder.com/acm/contest/920#question A 构造+双指针 发现m的限制是1e5,而点数是5e4,所以不能构造太多的边,思考一下最短路树的定义. ...
- 洛谷 P2678 & [NOIP2015提高组] 跳石头
题目链接 https://www.luogu.org/problemnew/show/P2678 题目背景 一年一度的“跳石头”比赛又要开始了! 题目描述 这项比赛将在一条笔直的河道中进行,河道中分布 ...
- [NOIP2015] 提高组 洛谷P2615 神奇的幻方
题目描述 幻方是一种很神奇的N*N矩阵:它由数字1,2,3,……,N*N构成,且每行.每列及两条对角线上的数字之和都相同. 当N为奇数时,我们可以通过以下方法构建一个幻方: 首先将1写在第一行的中间. ...
随机推荐
- centos不能挂在ntfs
root@s 下载]# mount /dev/sdb1 /mnt mount: unknown filesystem type 'ntfs' wget http://www.tuxera.com/co ...
- Python 出现需要使用fPIC重新编译的问题
在已经存在python安装环境的情况下,当安装第三方的包的时候出现报错提示 /usr/bin/ld: .../lib/libpython2.7.a(abstract.o): relocation R_ ...
- Python用format格式化字符串
format是是python2.6新增的一个格式化字符串的方法,相对于老版的%格式方法,它有很多优点. 1.不需要理会数据类型的问题,在%方法中%s只能替代字符串类型 2.单个参数可以多次输出,参数顺 ...
- Vijos p1165 火烧赤壁 离散化+单调栈
题目链接:https://vijos.org/p/1165 题意:输入n(n <= 20,000)段线段的端点,问所有线段的长度总和为多少? input: -1 1 5 11 2 9 outpu ...
- 2014年辛星完全解读Javascript第二节
本小节我们讲解一下Javascript的语法,虽然js语言非常简单,它的语法也相对好学一些,但是不学总之还是不会的,因此,我们来一探究竟把. ********注释************* 1.我们通 ...
- Linux PS 命令详解
Linux操作系统PS命令详细解析 要对系统中进程进行监测控制,用 ps 命令满足你. /bin/ps ps 是显示瞬间行程的状态,并不动态连续:如果想对进程运行时间监控,应该用 top 工具. ki ...
- bzoj 4127: Abs 树链剖分
4127: Abs Time Limit: 40 Sec Memory Limit: 256 MBSubmit: 11 Solved: 5[Submit][Status][Discuss] Des ...
- BZOJ 3713: [PA2014]Iloczyn
Description 斐波那契数列的定义为:k=0或1时,F[k]=k:k>1时,F[k]=F[k-1]+F[k-2].数列的开头几项为0,1,1,2,3,5,8,13,21,34,55,-你 ...
- Ubuntu下Qt编译报错“cannot find -lGL”的解决方案
转自cannot find -lGL Solved the problem by installing the "libglu1-mesa-dev" package. sudo a ...
- 1319-n皇后问题
描述 在n×n 格的棋盘上放置彼此不受攻击的n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n后问题等价于在n×n格的棋盘上放置n个皇后,任何2 个皇后不放在同一 ...