单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式

 
 

一 表结构如下: 

MySQL  5.5.30  5.6.20 版本, 表大概有815万行

CREATE TABLE t_audit_operate_log (
  Fid bigint(16) AUTO_INCREMENT,
  Fcreate_time int(10) unsigned NOT NULL DEFAULT '0',
  Fuser varchar(50) DEFAULT '',
  Fip bigint(16) DEFAULT NULL,
  Foperate_object_id bigint(20) DEFAULT '0',
  PRIMARY KEY (Fid),
  KEY indx_ctime (Fcreate_time),
  KEY indx_user (Fuser),
  KEY indx_objid (Foperate_object_id),
  KEY indx_ip (Fip)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;

执行查询:

mysql> explain select count(*) from t_audit_operate_log where Fuser='XX@XX.com' and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t_audit_operate_log

type: ref

possible_keys: indx_ctime,indx_user

key: indx_user

key_len: 153

ref: const

rows: 2007326

Extra: Using where

发现,使用了一个不合适的索引, 不是很理想,于是改成指定索引:

mysql> explain select count(*) from t_audit_operate_log use index(indx_ctime) where Fuser='CY6016@cyou-inc.com' and Fcreate_time>=1407081600 and Fcreate_time<=1407427199\G

*************************** 1. row ***************************

id: 1

select_type: SIMPLE

table: t_audit_operate_log

type: range

possible_keys: indx_ctime

key: indx_ctime

key_len: 5

ref: NULL

rows: 670092

Extra: Using where

实际执行耗时,后者比前者快了接近10

问题: 很奇怪,优化器为何不选择使用 indx_ctime 索引,而选择了明显会扫描更多行的 indx_user 索引。

分析2个索引的数据量如下:  两个条件的唯一性对比:

select count(*) from t_audit_operate_log where Fuser='XX@XX.com';
+----------+
| count(*) |
+----------+
| 1238382 | 
+----------+

select count(*) from t_audit_operate_log where Fcreate_time>=1407254400 and Fcreate_time<=1407427199;
+----------+
| count(*) |
+----------+
| 198920 | 
+----------+

显然,使用索引indx_ctime好于indx_user,但MySQL却选择了indx_user. 为什么?

于是,使用 OPTIMIZER_TRACE进一步探索.

二  OPTIMIZER_TRACE的过程说明

以本处事例简要说明OPTIMIZER_TRACE的过程.

{\
  "steps": [\
    {\
      "join_preparation": {\  ---优化准备工作
        "select#": 1,\
        "steps": [\
          {\
            "expanded_query": "/* select#1 */ select count(0) AS `count(*)` from `t_audit_operate_log` where ((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
          }\
        ] /* steps */\
      } /* join_preparation */\
    },\
    {\
      "join_optimization": {\  ---优化工作的主要阶段,包括逻辑优化和物理优化两个阶段
        "select#": 1,\
        "steps": [\  ---优化工作的主要阶段, 逻辑优化阶段
          {\
            "condition_processing": {\  ---逻辑优化,条件化简
              "condition": "WHERE",\
              "original_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))",\
              "steps": [\
                {\
                  "transformation": "equality_propagation",\  ---逻辑优化,条件化简,等式处理
                  "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
                },\
                {\
                  "transformation": "constant_propagation",\  ---逻辑优化,条件化简,常量处理
                  "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
                },\
                {\
                  "transformation": "trivial_condition_removal",\  ---逻辑优化,条件化简,条件去除
                  "resulting_condition": "((`t_audit_operate_log`.`Fuser` = 'XX@XX.com') and (`t_audit_operate_log`.`Fcreate_time` >= 1407081600) and (`t_audit_operate_log`.`Fcreate_time` <= 1407427199))"\
                }\
              ] /* steps */\
            } /* condition_processing */\
          },\  ---逻辑优化,条件化简,结束
          {\
            "table_dependencies": [\  ---逻辑优化, 找出表之间的相互依赖关系. 非直接可用的优化方式.
              {\
                "table": "`t_audit_operate_log`",\
                "row_may_be_null": false,\
                "map_bit": 0,\
                "depends_on_map_bits": [\
                ] /* depends_on_map_bits */\
              }\
            ] /* table_dependencies */\
          },\
          {\
            "ref_optimizer_key_uses": [\   ---逻辑优化,  找出备选的索引
              {\
                "table": "`t_audit_operate_log`",\
                "field": "Fuser",\
                "equals": "'XX@XX.com'",\
                "null_rejecting": false\
              }\
            ] /* ref_optimizer_key_uses */\
          },\
          {\
            "rows_estimation": [\   ---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描和索引扫描的代价估算. 每个索引都估算索引扫描代价
              {\
                "table": "`t_audit_operate_log`",\
                "range_analysis": {\
                  "table_scan": {\---逻辑优化, 估算每个表的元组个数. 单表上进行全表扫描的代价
                    "rows": 8150516,\
                    "cost": 1.73e6\
                  } /* table_scan */,\
                  "potential_range_indices": [\ ---逻辑优化, 列出备选的索引. 后续版本字符串变为potential_range_indexes
                    {\
                      "index": "PRIMARY",\---逻辑优化, 本行表明主键索引不可用
                      "usable": false,\
                      "cause": "not_applicable"\
                    },\
                    {\
                      "index": "indx_ctime",\---逻辑优化, 索引indx_ctime
                      "usable": true,\
                      "key_parts": [\
                        "Fcreate_time",\
                        "Fid"\
                      ] /* key_parts */\
                    },\
                    {\
                      "index": "indx_user",\---逻辑优化, 索引indx_user
                      "usable": true,\
                      "key_parts": [\
                        "Fuser",\
                        "Fid"\
                      ] /* key_parts */\
                    },\
                    {\
                      "index": "indx_objid",\---逻辑优化, 索引
                      "usable": false,\
                      "cause": "not_applicable"\
                    },\
                    {\
                      "index": "indx_ip",\---逻辑优化, 索引
                      "usable": false,\
                      "cause": "not_applicable"\
                    }\
                  ] /* potential_range_indices */,\
                  "setup_range_conditions": [\ ---逻辑优化,如果有可下推的条件,则带条件考虑范围查询
                  ]/* setup_range_conditions */,\
                  "group_index_range":{\---逻辑优化,如带有GROUPBY或DISTINCT,则考虑是否有索引可优化这种操作.并考虑带有MIN/MAX的情况
                    "chosen":false,\
                    "cause":"not_group_by_or_distinct"\
                  }/* group_index_range */,\
                  "analyzing_range_alternatives":{\---逻辑优化,开始计算每个索引做范围扫描的花费(等值比较是范围扫描的特例)
                    "range_scan_alternatives":[\
                      {\
                        "index":"indx_ctime",\ ---[A]
                        "ranges":[\
                          "1407081600 <= Fcreate_time <= 1407427199"\
                        ]/* ranges */,\
                        "index_dives_for_eq_ranges":true,\
                        "rowid_ordered":false,\
                        "using_mrr":true,\
                        "index_only":false,\
                        "rows":688362,\
                        "cost":564553,\ ---逻辑优化,这个索引的代价最小
                        "chosen":true\ ---逻辑优化,这个索引的代价最小,被选中.(比前面的table_scan 和其他索引的代价都小)
                      },\
                      {\
                        "index":"indx_user",\
                        "ranges":[\
                          "XX@XX.com <= Fuser <= XX@XX.com"\
                        ]/* ranges */,\
                        "index_dives_for_eq_ranges":true,\
                        "rowid_ordered":true,\
                        "using_mrr":true,\
                        "index_only":false,\
                        "rows":1945894,\
                        "cost":1.18e6,\
                        "chosen":false,\
                        "cause":"cost"\
                      }\
                    ]/* range_scan_alternatives */,\
                    "analyzing_roworder_intersect":{\
                      "usable":false,\
                      "cause":"too_few_roworder_scans"\
                    }/* analyzing_roworder_intersect */\
                  }/* analyzing_range_alternatives */,\---逻辑优化,开始计算每个索引做范围扫描的花费.这项工作结算
                  "chosen_range_access_summary":{\---逻辑优化,开始计算每个索引做范围扫描的花费.总结本阶段最优的.
                    "range_access_plan":{\
                      "type":"range_scan",\
                      "index":"indx_ctime",\
                      "rows":688362,\
                      "ranges":[\
                        "1407081600 <= Fcreate_time <= 1407427199"\
                      ]/* ranges */\
                    }/* range_access_plan */,\
                    "rows_for_plan":688362,\
                    "cost_for_plan":564553,\
                    "chosen":true\    --这里看到的cost和rows都比 indx_user 要来的小很多---这个和[A]处是一样的,是信息汇总.
                  }/* chosen_range_access_summary */\
                }/* range_analysis */\
              }\
            ]/* rows_estimation */\ ---逻辑优化,估算每个表的元组个数.行估算结束
          },\
          {\
            "considered_execution_plans":[\ ---物理优化,开始多表连接的物理优化计算
              {\
                "plan_prefix":[\
                ]/* plan_prefix */,\
                "table":"`t_audit_operate_log`",\
                "best_access_path":{\
                  "considered_access_paths":[\
                    {\
                      "access_type":"ref",\ ---物理优化,计算indx_user索引上使用ref方查找的花费,
                      "index":"indx_user",\
                      "rows":1.95e6,\
                      "cost":683515,\
                      "chosen":true\
                    },\ ---物理优化,本应该比较所有的可用索引,即打印出多个格式相同的但索引名不同的内容,这里却没有。推测是bug--没有遍历每一个索引.
                    {\
                      "access_type":"range",\---物理优化,猜测对应的是indx_time(没有实例可进行调试,对比5.7的跟踪信息猜测而得)
                      "rows":516272,\
                      "cost":702225,\---物理优化,代价大于了ref方式的683515,所以没有被选择
                      "chosen":false\   -- cost比上面看到的增加了很多,但rows没什么变化---物理优化,此索引没有被选择
                    }\
                  ]/* considered_access_paths */\
                }/* best_access_path */,\
                "cost_for_plan":683515,\ ---物理优化,汇总在best_access_path 阶段得到的结果
                "rows_for_plan":1.95e6,\
                "chosen":true\   -- cost比上面看到的竟然小了很多?虽然rows没啥变化  ---物理优化,汇总在best_access_path 阶段得到的结果
              }\
            ]/* considered_execution_plans */\
          },\
          {\
            "attaching_conditions_to_tables":{\---逻辑优化,尽量把条件绑定到对应的表上
              }/* attaching_conditions_to_tables */\
          },\
          {\
            "refine_plan":[\
              {\
                "table":"`t_audit_operate_log`",\---逻辑优化,下推索引条件"pushed_index_condition";其他条件附加到表上做为过滤条件"table_condition_attached"
              }\
            ]/* refine_plan */\
          }\
        ]/* steps */\
      }/* join_optimization */\ \---逻辑优化和物理优化结束
    },\
    {\
      "join_explain":{}/* join_explain */\
    }\
  ]/* steps */\

  1.  
  1. 其他一个相似问题
  1. 单表扫描,使用refrange从索引获取数据一例  
  1. http://blog.163.com/li_hx/blog/static/183991413201461853637715/

四 问题的解决方式

遇到单表上有多个索引的时候,在MySQL5.6.20版本之前的版本,需要人工强制使用索引,以达到最好的效果.

单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式的更多相关文章

  1. 单表扫描,MySQL索引选择不正确 并 详细解析OPTIMIZER_TRACE格式

    一 表结构如下:  万行 CREATE TABLE t_audit_operate_log (  Fid bigint(16) AUTO_INCREMENT,  Fcreate_time int(10 ...

  2. MySQL索引选择不正确并详细解析OPTIMIZER_TRACE格式

    一 表结构如下: CREATE TABLE t_audit_operate_log (  Fid bigint(16) AUTO_INCREMENT,  Fcreate_time int(10) un ...

  3. MySQL中的全表扫描和索引树扫描

    引言 在学习mysql时,我们经常会使用explain来查看sql查询的索引等优化手段的使用情况.在使用explain时,我们可以观察到,explain的输出有一个很关键的列,它就是type属性,ty ...

  4. 图解MySQL索引(三)—如何正确使用索引?

    MySQL使用了B+Tree作为底层数据结构,能够实现快速高效的数据查询功能.工作中可怕的是没有建立索引,比这更可怕的是建好了索引又没有使用到.本文将围绕着如何优雅的使用索引,图文并茂地和大家一起探讨 ...

  5. 如何优雅的使用 参数 is null而不导致全表扫描(破坏索引)

    相信大家在很多实际业务中(特别是后台系统)会使用到各种筛选条件来筛选结果集 首先添加测试数据 ), Age INT) go CREATE INDEX idx_age ON TempList (Age) ...

  6. 表数据量影响MySQL索引选择

    现象 新建了一张员工表,插入了少量数据,索引中所有的字段均在where条件出现时,正确走到了idx_nap索引,但是where出现部分自左开始的索引时,却进行全表扫描,与MySQL官方所说的最左匹配原 ...

  7. MySQL索引选择及规则整理

    索引选择性就是结果个数与总个数的比值. 用sql语句表示为: SELECT COUNT(*) FROM table_name WHERE column_name/SELECT COUNT(*) FRO ...

  8. 七、mysql索引选择

    .myisam,bdb,innodb,memory 单表至少支持16个索引 .create index id_index on emp (id) 为emp表创建一个名为id_index的id字段的索引 ...

  9. MySQL索引选择及添加原则

    索引选择性就是结果个数与总个数的比值. 用sql语句表示为: SELECT COUNT(*) FROM table_name WHERE column_name/SELECT COUNT(*) FRO ...

随机推荐

  1. matplotlib 显示中文

    # --*-- coding: utf-8 --*-- from matplotlib.font_manager import FontProperties import matplotlib.pyp ...

  2. 一周一话题之一(EF-CodeFirst、MEF、T4框架搭建学习)

    本话题是根据郭明峰博客<MVC实用架构系列>的搭建学习总结. -->目录导航 一.数据仓储访问的构建     1.UnitOfWork的构建     2.Repository的构建 ...

  3. WINDOWS WMI--这是一个神奇的应用

    运行:wbemtest.exe

  4. 【网络流24题】No. 20 深海机器人问题 (费用流)

    [题意] 深海资源考察探险队的潜艇将到达深海的海底进行科学考察.潜艇内有多个深海机器人. 潜艇到达深海海底后, 深海机器人将离开潜艇向预定目标移动. 深海机器人在移动中还必须沿途采集海底生物标本. 沿 ...

  5. 【POJ1743】 Musical Theme (二分+后缀数组)

    Musical Theme Description A musical melody is represented as a sequence of N (1<=N<=20000)note ...

  6. CF_91B

    题目意思是这样的:给定n个整数,求第i个数右边的距离它最远的比它小的数的下标之差然后再减1. 这里既然是需要知道距离该数最远的下标,可以从右至左扫描一遍,然后按照单调递减的顺序入栈,即只把比栈顶元素小 ...

  7. 【Xamarin挖墙脚系列:Xamarin4.0的重大变更】

    原文:[Xamarin挖墙脚系列:Xamarin4.0的重大变更] Windows下的变更不大,主要还是bug 的修复,性能的优化,API的扩展实现. 变化最大的是在Mac上的那个Xamarin.iO ...

  8. 《ruby编程语言》笔记 1

    赋值: ruby支持并行赋值,即允许在赋值表达式中出现多余一个值和多于一个的变量: x,y=1,2a,b=b,ax,y,z=[1,2,3] (python同样可以正常上面的语句). Methods i ...

  9. picturebox 图片自适应

    picturebox控件共有两种载入图片方式,分别为: pictureBox1.BackgroundImage = Image,pictureBox1.load(url) 为使加载的图片自使用控件尺寸 ...

  10. SQL Server数据库存在判断语句及系统表简介 转

    Transact-SQL Exists Sentences--判断数据库是否存在IF EXISTS(SELECT * FROM master.sysdatabases WHERE name=N'库名' ...