题目描述

Farmer John is gathering the cows. His farm contains a network of N (1 <= N <= 100,000) fields conveniently numbered 1..N and connected by N-1 unidirectional paths that eventually lead to field 1. The fields and paths form a tree.

Each field i > 1 has a single one-way, exiting path to field P_i, and currently contains C_i cows (1 <= C_i <= 1,000,000,000). In each time unit, no more than M_i (0 <= M_i <= 1,000,000,000) cows can travel from field i to field P_i (1 <= P_i <= N) (i.e., only M_i cows can traverse the path).

Farmer John wants all the cows to congregate in field 1 (which has no limit on the number of cows it may have). Rules are as follows:

  • Time is considered in discrete units.

  • Any given cow might traverse multiple paths in the same time unit. However, no more than M_i total cows can leave field i (i.e., traverse its exit path) in the same time unit.

  • Cows never move *away* from field #1.

In other words, every time step, each cow has the choice either to

a) stay in its current field

b) move through one or more fields toward field #1, as long as the bottleneck constraints for each path are not violated

Farmer John wants to know how many cows can arrive in field 1 by certain times. In particular, he has a list of K (1 <= K <= 10,000) times T_i (1 <= T_i <= 1,000,000,000), and he wants to know, for each T_i in the list, the maximum number of cows that can arrive at field 1 by T_i if scheduled to optimize this quantity.

Consider an example where the tree is a straight line, and the T_i list contains only T_1=5, and cows are distibuted as shown:

Locn:      1---2---3---4      <-- Pasture ID numbers
C_i: 0 1 12 12 <-- Current number of cows
M_i: 5 8 3 <-- Limits on path traversal; field 1 has no limit since it has no exit
The solution is as follows; the goal is to move cows to field 1:

Tree: 1---2---3---4

t=0        0   1   12  12     <-- Initial state
t=1 5 4 7 9 <-- field 1 has cows from field 2 and 3 t=2 10 7 2 6
t=3 15 7 0 3
t=4 20 5 0 0
t=5 25 0 0 0
Thus, the answer is 25: all 25 cows can arrive at field 1 by time t=5.
Farmer John有一张N个农场构成的网络(1 <= N <= 100,000) ,我们将农场标记为1N。 农场被N-1条单向道路连接,保证从任何一个农场可以到达1号农场。FJ想让奶牛到1号农场集中 (P.S. 至于要做什么我也不知道)。 对于每个农场i > 1都有一条单独的单向道路通往P_i,并且这个农场里有C_i只奶牛 (1 <= C_i <= 1,000,000,000)。

在每个单位时间里,这条道路允许不超过M_i (0 <= M_i <= 1,000,000,000)只奶牛从农场i走到农场P_i (1 <= P_i <= N)。 Farmer John 想让所有的奶牛都集中在1号农场(农场容纳奶牛的数量是没有限制的)。 下面是奶牛集中到1号农场过程的规则:

  • 我们认为时间是离散的 * 任何奶牛都可以在一个单位时间里走过任意多条道路。但是,必须满足每条道路的上限M_i。

  • 奶牛从来不会离开1号农场。 换句话说,每一个单位时间,每只奶牛可以选择下面行动之一:

a) 留在当前的农场

b) 经过一条或者多条道路,向1号农场移动。

同样,需要满足每条道路的上限M_i。

FJ想知道有多少奶牛可以在某个特定的时刻到达1号农场。

特别的,他有一张列着K (1 <= K <= 10,000) 个时间T_i (1 <= T_i <= 1,000,000,000)的单子,他想知道对于每个T_i,如果采用最优 的策略在这个时刻结束时最多能有多少奶牛到达1号农场。

输入输出格式

输入格式:

  • Line 1: Two space-separated integers: N and K

  • Lines 2..N: Line i (not i+1) describes field i with three

space-separated integers: P_i, C_i, and M_i

  • Lines N+1..N+K: Line N+i contains a single integer: T_i

输出格式:

  • Lines 1..K: Line i contains a single integer that is the maximum number of cows that can arrive at field 1 by time T_i.

输入输出样例

输入样例#1:

4 1
1 1 5
2 12 7
3 12 3
5
输出样例#1:

25
 1 #include <algorithm>
2 #include <iostream>
3 #include <cstring>
4 #include <cstdio>
5 #include <queue>
6 typedef long long LL;
7 using namespace std;
8 const int N=100010;
9 struct Query{LL t,res;int id;}ask[N];
10 bool cmp1(Query x,Query y){return x.t<y.t;}
11 bool cmp2(Query x,Query y){return x.id<y.id;}
12 struct Node{
13 LL t;int x;Node(LL t_=0,int x_=0){t=t_;x=x_;}
14 friend bool operator<(Node a,Node b){return a.t>b.t;}
15 };
16 priority_queue<Node>q;
17 int fa[N],anc[N],lim[N];
18 LL cow[N],pass[N];
19 int Find(int x){
20 if(anc[x]==x)return x;
21 return anc[x]=Find(anc[x]);
22 }
23 int n,Q;
24 int main(){
25 freopen("bottleneck.in","r",stdin);
26 freopen("bottleneck.out","w",stdout);
27 scanf("%d%d",&n,&Q);
28 for(int i=1;i<=n;i++)
29 anc[i]=i;
30 for(int i=2;i<=n;i++){
31 scanf("%d",&fa[i]);
32 scanf("%lld",&cow[i]);
33 scanf("%lld",&lim[i]);
34 pass[fa[i]]-=lim[i];
35 pass[i]+=lim[i];
36 }
37 for(int i=1;i<=Q;i++){
38 scanf("%lld",&ask[i].t);
39 ask[i].id=i;
40 }sort(ask+1,ask+Q+1,cmp1);
41
42 for(int i=2;i<=n;i++)
43 if(pass[i]>0){
44 LL t=cow[i]/pass[i];
45 q.push(Node(t,i));
46 }
47
48 int p=1,x,tp;
49 while(!q.empty()&&p<=Q){
50 while(p<=Q&&ask[p].t<=q.top().t)
51 ask[p].res=cow[1]-pass[1]*ask[p].t,p++;
52 if(anc[q.top().x]!=q.top().x){q.pop();continue;}
53 x=q.top().x;tp=Find(fa[x]);cow[tp]+=cow[x];
54 pass[tp]+=pass[x];anc[x]=tp;
55 if(pass[tp]>0){
56 LL t=cow[tp]/pass[tp];
57 q.push(Node(t,tp));
58 }
59 q.pop();
60 }sort(ask+1,ask+Q+1,cmp2);
61 for(int i=1;i<=Q;i++)
62 printf("%lld\n",ask[i].res);
63 return 0;
64 }

模拟(堆):USACO Jan11 瓶颈的更多相关文章

  1. Java堆内存溢出模拟

    先了解一下Java堆: 关于Java内存区域的分配,可以查看Java运行时数据区域一篇文章. Java堆是虚拟机内存管理中最大的一块区域,该区域是线程共享的,某Java进程中所有的线程都可以访问该区域 ...

  2. Eclipse Memory Analysis进行堆转储文件分析

    生成堆转储文件 新建项目,设置Eclispe Java堆的大小: (1)限制Java堆大小:将最小值 -Xms参数与最大值-Xmx参数设置一样可避免堆的扩展         -Xmx20m -Xms2 ...

  3. USACO Section 1.1 Your Ride Is Here 解题报告

    题目 问题描述 将字符串转变为数字,字母A对应的值为1,依次对应,字母Z对应的值为26.现在有一个字符串,将其中的每个字符转变为数字之后进行累乘,最终的结果对47求余数. 题目给你两个字符串,其中的字 ...

  4. 基本数据结构——堆(Heap)的基本概念及其操作

    基本数据结构――堆的基本概念及其操作 小广告:福建安溪一中在线评测系统 Online Judge 在我刚听到堆这个名词的时候,我认为它是一堆东西的集合... 但其实吧它是利用完全二叉树的结构来维护一组 ...

  5. Java 伙伴系统(模拟)

    参考:https://labrick.cc/2015/10/12/buddy-system-algorithm/ 代码过烂 不宜参考. output: [operating.entity.Heap@4 ...

  6. 堆排序(大顶堆、小顶堆)----C语言

    堆排序 之前的随笔写了栈(顺序栈.链式栈).队列(循环队列.链式队列).链表.二叉树,这次随笔来写堆 1.什么是堆? 堆是一种非线性结构,(本篇随笔主要分析堆的数组实现)可以把堆看作一个数组,也可以被 ...

  7. Java伙伴系统(模拟)

    参考:https://labrick.cc/2015/10/12/buddy-system-algorithm/ 代码过烂 不宜参考. output: [operating.entity.Heap@4 ...

  8. hihocoder 1109 堆优化的Prim算法

    题目链接:http://hihocoder.com/problemset/problem/1109 , 最小生成树 + 堆优化(优先队列). 可以用优先队列,也可以自己手动模拟堆,为了练手,我两种都试 ...

  9. 数据结构中的堆(Heap)

    堆排序总结 这是排序,不是查找!!!查找去找二叉排序树等. 满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树. 构建顶堆: a.构造初始堆 b.从最后一层非叶节点开始调整,一直到根节点 c.如果 ...

随机推荐

  1. 升级Capitan 10.11以后CocoaPod 无效解决办法

    今天发现升级10.11的系统以后执行 pod install 的时候报错 zsh: command not found: pod 解决方法如下: 1.检查gem 的数据源 gem sources -l ...

  2. IOS GCD 的理解

    GCD (Grand Central Dispatch) 是Apple公司开发的一种技术,它旨在优化多核环境中的并发操作并取代传统多线程的编程模式. 在Mac OS X 10.6和IOS 4.0之后开 ...

  3. 编程语言的发展趋势by Anders Hejlsberg

    这是Anders Hejlsberg在比利时TechDays 2010所做的开场演讲. 编程语言的发展非常缓慢,期间也当然出现了一些东西,例如面向对象等等,你可能会想,那么我么这么多年的努力都到哪里去 ...

  4. 【转】Spring事务管理

    原文链接 在 Spring 中,事务是通过 TransactionDefinition 接口来定义的.该接口包含与事务属性有关的方法.具体如清单 1 所示: 清单 1. TransactionDefi ...

  5. linux正确重启MySQL的方法

    修改了my.cnf,需要重启MySQL服务,正确重启MYSQL方法请看下面的文章 由于是从源码包安装的Mysql,所以系统中是没有红帽常用的servcie mysqld restart这个脚本 只好手 ...

  6. 安装 SQL Server 2005 的硬件和软件要求(官方全面)

    SQL Server 2005 安装要求 本主题介绍了安装 SQL Server 205 的硬件和软件要求,以及查看安装文档的说明. 硬件和软件要求(32 位和 64 位) 访问 SQL Server ...

  7. RSA算法原理及实现

    参考资料: 阮哥的日志:http://www.ruanyifeng.com/blog/2013/06/rsa_algorithm_part_one.html http://www.ruanyifeng ...

  8. .h头文件、 .lib库文件、 .dll动态链接库文件之间的关系

    转自.h头文件. .lib库文件. .dll动态链接库文件之间的关系 h头文件作用:声明函数接口 dll动态链接库作用:含有函数的可执行代码 lib库有两种: (1)静态链接库(Static Liba ...

  9. 关于 OneAPM Cloud Test DNS 监控的几个重要问题

    你注意到了吗?OneAPM Cloud Test 已经全面开启支持 DNS 监控了! CT 产品自上线以来一直致力于产品完善,希望能够尽可能全面地满足用户需求,为您提供完美的用户体验.目前 Cloud ...

  10. Hicharts弄个样例

    前端的事情,但最好自己要了解一下,能作个最简单的东东出来... 样例,需要的时候,用用,就喟给它一样模板数据即可. PYTHON,把字典的键值和KEY值匹配成列表即可. $(function () { ...