等价类计数问题,我们就先构造置换群

显然置换分为两种类型,旋转和翻折

先考虑旋转,每旋转i格子,这个置换的循环数为gcd(i,n); (1<=i<=n) 为什么是这个范围,下篇报告再说

翻转也是n种,显然要分奇偶讨论

奇数时,翻转只能从顶点,都是一个类型的,循环数位(n+1)/2

偶数时,翻转既能沿边折,循环数为n/2,又可以沿关于圆心的对称点连线折,循环数为(n-2)/2+2=(n+2)/2

然后直接套一下polya定理就可以了,还是比较简单容易分析出来的

 var d:array[..] of int64;
    i,n:longint;
    ans:int64; function gcd(a,b:longint):longint;
  begin
    if b= then exit(a)
    else exit(gcd(b,a mod b));
  end; begin
  readln(n);
  d[]:=;
  for i:= to do
    d[i]:=d[i-]*;   while n<>- do
  begin
    if n= then writeln()
    else begin
      ans:=;
      for i:= to n do
        ans:=ans+d[gcd(n,i)];
      if n mod = then ans:=ans+n*d[(n+) div ]
      else ans:=ans+n div *d[n div ]+n div *d[(n+) div ];
      writeln(ans div div n);
    end;
    readln(n);
  end;
end.

poj1286的更多相关文章

  1. [POJ1286&POJ2154&POJ2409]Polya定理

    Polya定理 L=1/|G|*(m^c(p1)+m^c(p2)+...+m^c(pk)) G为置换群大小 m为颜色数量 c(pi)表示第i个置换的循环节数 如置换(123)(45)(6)其循环节数为 ...

  2. 【数论】【Polya定理】poj1286 Necklace of Beads

    Polya定理:设G={π1,π2,π3........πn}是X={a1,a2,a3.......an}上一个置换群,用m中颜色对X中的元素进行涂色,那么不同的涂色方案数为:1/|G|*(mC(π1 ...

  3. POJ1286 Necklace of Beads

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 8263   Accepted: 3452 Description Beads ...

  4. POJ1286 Necklace of Beads(Polya定理)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9359   Accepted: 3862 Description Beads ...

  5. poj1286 Necklace of Beads—— Polya定理

    题目:http://poj.org/problem?id=1286 真·Polya定理模板题: 写完以后感觉理解更深刻了呢. 代码如下: #include<iostream> #inclu ...

  6. poj1286 Necklace of Beads【裸polya】

    非常裸的polya,只是我看polya看了非常久 吉大ACM模板里面也有 #include <cstdio> #include <cmath> #include <ios ...

  7. poj题目

    poj2965 poj1753:标准的BFS+位运算优化 poj1328:线段覆盖变种,把圆对应到线段上,贪心求解 poj2109:高精度开根,二分+高精度,注意要判断答案的位数,如果按照题目给的范围 ...

  8. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  9. 【转】POJ题目分类推荐 (很好很有层次感)

    OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)初期: 一. ...

随机推荐

  1. rc4加密

    function RC4(Expression, Password: string): string; var RB : array[0..255] of Integer; X, Y, Z: long ...

  2. weewwe

    http://blog.csdn.net/u013073524/article/details/25912891

  3. struts 模型驱动

    情景: 有一个用来处理用户的UserAction 类, 该动作类实现了 ModelDriven 接口. 当用户触发UserAction 动作时, ModelDriven 拦截器将调用相关UserAct ...

  4. Scala - 处理时间(nscala-time - Joda Time的scala封装)

    GITHUB : https://github.com/nscala-time/nscala-time MAVEN : (注意选对scala版本) <dependency> <gro ...

  5. AMAZON PRICE TRACKER, AMAZON PRICE HISTORY, AMAZON PRICE DROP ALERT | DROPGG.COM

    DropGG.com is the destination for savvy shoppers looking to save money by buying smart. DropGG.com a ...

  6. C语言中字符型和字符串型的区别?

    C语言中只有字符型类型,没有字符串型类型.字符类型用一个带符号的8位二进制编码表示,其性质与int相同,只是只有一个字节.表示字符的ASCII编码使用其中的0~127,所以要明白字符类型(char)其 ...

  7. android 布局权重问题(转载)

    //权重和父容器orientation有关 horizontal 指水平方向权重  android:layout_width vertical  指垂直方向权重   android:layout_he ...

  8. 使用ajax和history.pushState无刷新改变页面URL onpopstate(转)

    Javascript代码 var htmlData1 = $.ajax(    {    url: "/getXXXResponse",    async: false }).re ...

  9. 快速发展的Swift是否将淘汰Objective-C?

    随便拉上一个果粉说说这一年来苹果公司的成就,Apple Watch肯定排第一,再下来是iPhone破销量纪录及苹果30亿美元收购Beats Electronics,消息灵通的人说不定还会提到Apple ...

  10. The CircuitCalculator.com Blog a blog with live web calculators Home About Policies Contact PCB

    PCB Trace Width Calculator 转载自:CircuitCalculator.com 关键词: PCB,Layout,电流,导线宽度. This Javascript web ca ...