(建立索引)] )中生成的索引文件的存放地址。详细步骤简单介绍例如以下:

1、创建Directory对象,索引目录

2、创建IndexSearch对象,建立查询(參数是Directory对象)

3、创建QueryParser对象(lucene版本号,查询Field字段,所用分词器)

4、生成Query对象,由QueryParser对象的parse函数生成(參数是所查的keyword)

5、建立TopDocs对象(IndexSearch的search函数,參数是Query查询对象,)

6、TopDocs对象数组里存放查询信息

7、关闭IndexSearch

索引创建和搜索过程所一个总结

Lucene教程

Lucene是apache组织的一个用java实现全文搜索引擎的开源项目。 其功能非常的强大,api也非常easy。总得来说用Lucene来进行建立 和搜索和操作数据库是差点儿相同的(有点像),Document能够看作是 数据库的一行记录,Field能够看作是数据库的字段。用lucene实 现搜索引擎就像用JDBC实现连接数据库一样简单。

Lucene2.0,它与曾经广泛应用和介绍的Lucene 1.4.3并不兼容。 Lucene2.0的下载地址是http://apache.justdn.org/lucene/java/

样例一 :

1、在windows系统下的的C盘,建一个名叫s的目录,在该目录里面随便建三个txt文件,随便起名啦,就叫"1.txt","2.txt"和"3.txt"啦 
当中1.txt的内容例如以下:

中华人民共和国   
全国人民   
2006年

而"2.txt"和"3.txt"的内容也能够随便写几写,这里懒写,就复制一个和1.txt文件的内容一样吧

2、下载lucene包,放在classpath路径中 
建立索引:

package  lighter.javaeye.com;   
  
import  java.io.BufferedReader;   
import  java.io.File;   
import  java.io.FileInputStream;   
import  java.io.IOException;   
import  java.io.InputStreamReader;   
import  java.util.Date;   
  
import  org.apache.lucene.analysis.Analyzer;   
import  org.apache.lucene.analysis.standard.StandardAnalyzer;   
import  org.apache.lucene.document.Document;   
import  org.apache.lucene.document.Field;   
import  org.apache.lucene.index.IndexWriter;   
  
/** */ /**   
 * author lighter date 2006-8-7  
  */   
public   class  TextFileIndexer  {   
     public   static   void  main(String[] args)  throws  Exception  {   
         /**/ /*  指明要索引目录的位置,这里是C盘的S目录下  */   
        File fileDir  =   new  File( " c://s " );   
  
         /**/ /*  这里放索引文件的位置  */   
        File indexDir  =   new  File( " c://index " );   
        Analyzer luceneAnalyzer  =   new  StandardAnalyzer();  //建立一个标准分析器 
        IndexWriter indexWriter  =   new  IndexWriter(indexDir, luceneAnalyzer,   
                 true );   //创建一个索引器
        File[] textFiles  =  fileDir.listFiles();   
         long  startTime  =   new  Date().getTime();   
           
         //添加document到索引去    
         for  ( int  i  =   0 ; i  <  textFiles.length; i ++ )  {   
             if  (textFiles[i].isFile()   
                     &&  textFiles[i].getName().endsWith( " .txt " ))  {   
                System.out.println( " File  "   +  textFiles[i].getCanonicalPath()   
                         +   "正在被索引 . " );   
                String temp  =  FileReaderAll(textFiles[i].getCanonicalPath(),   
                         " GBK " );   
                System.out.println(temp);   
                Document document  =   new  Document();  //Document是一个记录。用来表示一个条目。就是搜索建立的倒排索引的条目。比方说,你要搜索自己电脑上的文件。这个时候就能够创建field。然后用field组合成 document 。最后会变成若干文件。这个document和 文件系统document不是一个概念。 
                Field FieldPath  =   new  Field( " path " , textFiles[i].getPath(),   
                        Field.Store.YES, Field.Index.NO);   //创建一个字段
                Field FieldBody  =   new  Field( " body " , temp, Field.Store.YES,   
                        Field.Index.TOKENIZED,   
                        Field.TermVector.WITH_POSITIONS_OFFSETS);   
                document.add(FieldPath);   
                document.add(FieldBody);   
                indexWriter.addDocument(document);   
            }    
        }    
         // optimize()方法是对索引进行优化    
        indexWriter.optimize();   
        indexWriter.close();   
           
         //測试一下索引的时间    
         long  endTime  =   new  Date().getTime();   
        System.out   
                .println( "这花费了 "   
                         +  (endTime  -  startTime)   
                         +   "  毫秒来把文档添加到索引里面去! "   
                         +  fileDir.getPath());   
    }    
  
     public   static  String FileReaderAll(String FileName, String charset)   
             throws  IOException  {   
        BufferedReader reader  =   new  BufferedReader( new  InputStreamReader(   
                 new  FileInputStream(FileName), charset));   
        String line  =   new  String();   
        String temp  =   new  String();   
           
         while  ((line  =  reader.readLine())  !=   null )  {   
            temp  +=  line;   
        }    
        reader.close();   
         return  temp;   
    }    
}

索引的结果:

File C:/s/ 1 .txt正在被索引 .   
中华人民共和国全国人民2006年   
File C:/s/ 2 .txt正在被索引 .   
中华人民共和国全国人民2006年   
File C:/s/ 3 .txt正在被索引 .   
中华人民共和国全国人民2006年   
这花费了297 毫秒来把文档添加到索引里面去 ! c:/s

3、建立了索引之后,查询啦....

package  lighter.javaeye.com;   
  
import  java.io.IOException;   
  
import  org.apache.lucene.analysis.Analyzer;   
import  org.apache.lucene.analysis.standard.StandardAnalyzer;   
import  org.apache.lucene.queryParser.ParseException;   
import  org.apache.lucene.queryParser.QueryParser;   
import  org.apache.lucene.search.Hits;   
import  org.apache.lucene.search.IndexSearcher;   
import  org.apache.lucene.search.Query;   
  
public   class  TestQuery  {   
     public   static   void  main(String[] args)  throws  IOException, ParseException  {   
        Hits hits  =   null ;   
        String queryString  =   "中华 " ;   
        Query query  =   null ;   
        IndexSearcher searcher  =   new  IndexSearcher( " c://index " );   
  
        Analyzer analyzer  =   new  StandardAnalyzer();   
         try   {   
            QueryParser qp  =   new  QueryParser( " body " , analyzer);   
            query  =  qp.parse(queryString);   
        }   catch  (ParseException e)  {   
        }    
         if  (searcher  !=   null )  {   
            hits  =  searcher.search(query);   
             if  (hits.length()  >   0 )  {   
                System.out.println( "找到: "   +  hits.length()  +   "  个结果! " );   
            }    
        }    
    }  
  
}

其执行结果:

找到: 3  个结果 !

Lucene事实上非常easy的,它最主要就是做两件事:建立索引和进行搜索 
来看一些在lucene中使用的术语,这里并不打算作详细的介绍,仅仅是点一下而已----由于这一个世界有一种好东西,叫搜索。

IndexWriter:lucene中最重要的的类之中的一个,它主要是用来将文档加入索引,同一时候控制索引过程中的一些參数使用。

Analyzer:分析器,主要用于分析搜索引擎遇到的各种文本。经常使用的有StandardAnalyzer分析器,StopAnalyzer分析器,WhitespaceAnalyzer分析器等。

Directory:索引存放的位置;lucene提供了两种索引存放的位置,一种是磁盘,一种是内存。普通情况将索引放在磁盘上;对应地lucene提供了FSDirectory和RAMDirectory两个类。

Document:文档;Document相当于一个要进行索引的单元,不论什么能够想要被索引的文件都必须转化为Document对象才干进行索引。

Field:字段。

IndexSearcher:是lucene中最主要的检索工具,全部的检索都会用到IndexSearcher工具;

Query:查询,lucene中支持模糊查询,语义查询,短语查询,组合查询等等,如有TermQuery,BooleanQuery,RangeQuery,WildcardQuery等一些类。

QueryParser:是一个解析用户输入的工具,能够通过扫描用户输入的字符串,生成Query对象。

Hits:在搜索完毕之后,须要把搜索结果返回并显示给用户,仅仅有这样才算是完毕搜索的目的。在lucene中,搜索的结果的集合是用Hits类的实例来表示的。

上面作了一大堆名词解释,以下就看几个简单的实例吧:
 1、简单的的StandardAnalyzer測试样例

package  lighter.javaeye.com;   
  
import  java.io.IOException;   
import  java.io.StringReader;   
  
import  org.apache.lucene.analysis.Analyzer;   
import  org.apache.lucene.analysis.Token;   
import  org.apache.lucene.analysis.TokenStream;   
import  org.apache.lucene.analysis.standard.StandardAnalyzer;   
  
public   class  StandardAnalyzerTest    
{   
     //构造函数,    
     public  StandardAnalyzerTest()   
     {   
    }    
     public   static   void  main(String[] args)    
     {   
         //生成一个StandardAnalyzer对象    
        Analyzer aAnalyzer  =   new  StandardAnalyzer();   
         //測试字符串    
        StringReader sr  =   new  StringReader( " lighter javaeye com is the are on " );   
         //生成TokenStream对象    
        TokenStream ts  =  aAnalyzer.tokenStream( " name " , sr);    
         try   {   
             int  i = 0 ;   
            Token t  =  ts.next();   
             while (t != null )   
             {   
                 //辅助输出时显示行号    
                i ++ ;   
                 //输出处理后的字符    
                System.out.println( "第 " + i + "行: " + t.termText());   
                 //取得下一个字符    
                t = ts.next();   
            }    
        }   catch  (IOException e)  {   
            e.printStackTrace();   
        }    
    }    
}

显示结果:

第1行:lighter 
第2行:javaeye 
第3行:com

提示一下: 
StandardAnalyzer是lucene中内置的"标准分析器",能够做例如以下功能:
 1、对原有句子依照空格进行了分词 
2、全部的大写字母都能够能转换为小写的字母 
3、能够去掉一些没实用处的单词,比如"is","the","are"等单词,也删除了全部的标点 
查看一下结果与"new StringReader("lighter javaeye com is the are on")"作一个比較就清楚明了。 
这里不正确其API进行解释了,详细见lucene的官方文档。须要注意一点,这里的代码使用的是lucene2的API,与1.43版有一些明显的区别。

2、看还有一个实例,简单地建立索引,进行搜索

package  lighter.javaeye.com;   
import  org.apache.lucene.analysis.standard.StandardAnalyzer;   
import  org.apache.lucene.document.Document;   
import  org.apache.lucene.document.Field;   
import  org.apache.lucene.index.IndexWriter;   
import  org.apache.lucene.queryParser.QueryParser;   
import  org.apache.lucene.search.Hits;   
import  org.apache.lucene.search.IndexSearcher;   
import  org.apache.lucene.search.Query;   
import  org.apache.lucene.store.FSDirectory;   
  
public   class  FSDirectoryTest  {   
  
     //建立索引的路径    
     public   static   final  String path  =   " c://index2 " ;   
  
     public   static   void  main(String[] args)  throws  Exception  {   
        Document doc1  =   new  Document();   
        doc1.add(  new  Field( " name " ,  " lighter javaeye com " ,Field.Store.YES,Field.Index.TOKENIZED));   
  
        Document doc2  =   new  Document();   
        doc2.add( new  Field( " name " ,  " lighter blog " ,Field.Store.YES,Field.Index.TOKENIZED));   
  
        IndexWriter writer  =   new  IndexWriter(FSDirectory.getDirectory(path,  true ),  new  StandardAnalyzer(),  true );   
        writer.setMaxFieldLength( 3 );   
        writer.addDocument(doc1);   
        writer.setMaxFieldLength( 3 );   
        writer.addDocument(doc2);   
        writer.close();   
  
        IndexSearcher searcher  =   new  IndexSearcher(path);   
        Hits hits  =   null ;   
        Query query  =   null ;   
        QueryParser qp  =   new  QueryParser( " name " , new  StandardAnalyzer());   
           
        query  =  qp.parse( " lighter " );   
        hits  =  searcher.search(query);   
        System.out.println( "查找/ " lighter/ "  共 "   +  hits.length()  +   "个结果 " );   
  
        query  =  qp.parse( " javaeye " );   
        hits  =  searcher.search(query);   
        System.out.println( "查找/ " javaeye/ "  共 "   +  hits.length()  +   "个结果 " );   
  
    }    
  
}

执行结果:

查找 " lighter "  共2个结果   
查找 " javaeye "  共1个结果

到如今我们已经能够用lucene建立索引了
以下介绍一下几个功能来完好一下:
1.索引格式

事实上索引目录有两种格式,

一种是除配置文件外,每个Document独立成为一个文件(这种搜索起来会影响速度)。

还有一种是全部的Document成一个文件,这样属于复合模式就快了。

2.索引文件可放的位置:

索引能够存放在两个地方1.硬盘,2.内存
放在硬盘上能够用FSDirectory(),放在内存的用RAMDirectory()只是一关机就没了

FSDirectory.getDirectory(File file,  boolean  create)
FSDirectory.getDirectory(String path,  boolean  create)

两个工厂方法返回目录
New RAMDirectory()就直接能够
再和

IndexWriter(Directory d, Analyzer a,  boolean  create)

一配合就可以了
如:

IndexWrtier indexWriter  =   new  IndexWriter(FSDirectory.getDirectory(“c://index”, true ), new  StandardAnlyazer(), true );
IndexWrtier indexWriter  =   new  IndexWriter( new  RAMDirectory(), new  StandardAnlyazer(), true );

3.索引的合并
这个可用

IndexWriter.addIndexes(Directory[] dirs)

将目录加进去
来看个样例:

public   void  UniteIndex()  throws  IOException
     {
        IndexWriter writerDisk  =   new  IndexWriter(FSDirectory.getDirectory( " c://indexDisk " ,  true ), new  StandardAnalyzer(), true );
        Document docDisk  =   new  Document();
        docDisk.add( new  Field( " name " , "程序猿之家 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writerDisk.addDocument(docDisk);
        RAMDirectory ramDir  =   new  RAMDirectory();
        IndexWriter writerRam  =   new  IndexWriter(ramDir, new  StandardAnalyzer(), true );
        Document docRam  =   new  Document();
        docRam.add( new  Field( " name " , "程序猿杂志 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writerRam.addDocument(docRam);
        writerRam.close(); //这种方法非常重要,是必须调用的 
        writerDisk.addIndexes( new  Directory[] {ramDir} );
        writerDisk.close();
    } 
     public   void  UniteSearch()  throws  ParseException, IOException
     {
        QueryParser queryParser  =   new  QueryParser( " name " , new  StandardAnalyzer());
        Query query  =  queryParser.parse( "程序猿 " );
        IndexSearcher indexSearcher  = new  IndexSearcher( " c://indexDisk " );
        Hits hits  =  indexSearcher.search(query);
        System.out.println( "找到了 " + hits.length() + "结果 " );
         for ( int  i = 0 ;i
         {
            Document doc  =  hits.doc(i);
            System.out.println(doc.get( " name " ));
        } 
}

这个样例是将内存中的索引合并到硬盘上来.
注意:合并的时候一定要将被合并的那一方的IndexWriter的close()方法调用。

4.对索引的其它操作:
IndexReader类是用来操作索引的,它有对Document,Field的删除等操作。
以下一部分的内容是:全文的搜索
全文的搜索主要是用:IndexSearcher,Query,Hits,Document(都是Query的子类),有的时候用QueryParser
主要步骤:

1 . new  QueryParser(Field字段, new  分析器)
2 .Query query  =  QueryParser.parser(“要查询的字串”);这个地方我们能够用反射api看一下query到底是什么类型
3 . new  IndexSearcher(索引目录).search(query);返回Hits
4 .用Hits.doc(n);能够遍历出Document
5 .用Document可得到Field的详细信息了。

事实上1 ,2两步就是为了弄出个Query实例,到底是什么类型的看分析器了。

拿曾经的样例来说吧

QueryParser queryParser  =   new  QueryParser( " name " , new  StandardAnalyzer());
        Query query  =  queryParser.parse( "程序猿 " );
/**/ /*这里返回的就是org.apache.lucene.search.PhraseQuery */ 
        IndexSearcher indexSearcher  = new  IndexSearcher( " c://indexDisk " );
        Hits hits  =  indexSearcher.search(query);

无论是什么类型,无非返回的就是Query的子类,我们全然能够不用这两步直接new个Query的子类的实例就ok了,只是一般还是用这两步由于它返回的是PhraseQuery这个是非常强大的query子类它能够进行多字搜索用QueryParser能够设置各个keyword之间的关系这个是最经常使用的了。
IndexSearcher:
事实上IndexSearcher它内部自带了一个IndexReader用来读取索引的,IndexSearcher有个close()方法,这种方法不是用来关闭IndexSearche的是用来关闭自带的IndexReader。

QueryParser呢能够用parser.setOperator()来设置各个keyword之间的关系(与还是或)它能够自己主动通过空格从字串里面将keyword分离出来。
注意:用QueryParser搜索的时候分析器一定的和建立索引时候用的分析器是一样的。
Query:
能够看一个lucene2.0的帮助文档有非常多的子类:
BooleanQuery, ConstantScoreQuery, ConstantScoreRangeQuery, DisjunctionMaxQuery, FilteredQuery, MatchAllDocsQuery, MultiPhraseQuery, MultiTermQuery, PhraseQuery, PrefixQuery, RangeQuery, SpanQuery, TermQuery
各自实使用方法看一下文档就能知道它们的使用方法了
以下一部分讲一下lucene的分析器:
分析器是由分词器和过滤器组成的,拿英文来说吧分词器就是通过空格把单词分开,过滤器就是把the,to,of等词去掉不被搜索和索引。
我们最经常使用的是StandardAnalyzer()它是lucene的标准分析器它集成了内部的很多的分析器。
最后一部分了:lucene的高级搜索了
1.排序
Lucene有内置的排序用IndexSearcher.search(query,sort)可是功能并不理想。我们须要自己实现自定义的排序。
这种话得实现两个接口: ScoreDocComparator, SortComparatorSource
用IndexSearcher.search(query,new Sort(new SortField(String Field,SortComparatorSource)));
就看个样例吧:
这是一个建立索引的样例:

public   void  IndexSort()  throws  IOException
{
        IndexWriter writer  =   new  IndexWriter( " C://indexStore " , new  StandardAnalyzer(), true );
        Document doc  =   new  Document()
        doc.add( new  Field( " sort " , " 1 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc  =   new  Document();
        doc.add( new  Field( " sort " , " 4 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc  =   new  Document();
        doc.add( new  Field( " sort " , " 3 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc  =   new  Document();
        doc.add( new  Field( " sort " , " 5 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc  =   new  Document();
        doc.add( new  Field( " sort " , " 9 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc  =   new  Document();
        doc.add( new  Field( " sort " , " 6 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        doc  =   new  Document();
        doc.add( new  Field( " sort " , " 7 " ,Field.Store.YES,Field.Index.TOKENIZED));
        writer.addDocument(doc);
        writer.close();
}

以下是搜索的样例:
[code]
public void SearchSort1() throws IOException, ParseException
{
        IndexSearcher indexSearcher = new IndexSearcher("C://indexStore");
        QueryParser queryParser = new QueryParser("sort",new StandardAnalyzer());
        Query query = queryParser.parse("4");
       
        Hits hits = indexSearcher.search(query);
        System.out.println("有"+hits.length()+"个结果");
        Document doc = hits.doc(0);
        System.out.println(doc.get("sort"));
}
public void SearchSort2() throws IOException, ParseException
{
        IndexSearcher indexSearcher = new IndexSearcher("C://indexStore");
        Query query = new RangeQuery(new Term("sort","1"),new Term("sort","9"),true);//这个地方前面没有提到,它是用于范围的Query能够看一下帮助文档.
        Hits hits = indexSearcher.search(query,new Sort(new SortField("sort",new MySortComparatorSource())));
        System.out.println("有"+hits.length()+"个结果");
        for(int i=0;i
        {
            Document doc = hits.doc(i);
            System.out.println(doc.get("sort"));
        }
}
public class MyScoreDocComparator implements ScoreDocComparator
{
    private Integer[]sort;
    public MyScoreDocComparator(String s,IndexReader reader, String fieldname) throws IOException
    {
        sort = new Integer[reader.maxDoc()];
        for(int i = 0;i
        {
            Document doc =reader.document(i);
            sort[i]=new Integer(doc.get("sort"));
        }
    }
    public int compare(ScoreDoc i, ScoreDoc j)
    {
        if(sort[i.doc]>sort[j.doc])
            return 1;
        if(sort[i.doc]
            return -1;
        return 0;
    }
    public int sortType()
    {
        return SortField.INT;
    }
    public Comparable sortValue(ScoreDoc i)
    {
        // TODO自己主动生成方法存根
        return new Integer(sort[i.doc]);
    }
}
public class MySortComparatorSource implements SortComparatorSource
{
    private static final long serialVersionUID = -9189690812107968361L;
    public ScoreDocComparator newComparator(IndexReader reader, String fieldname)
            throws IOException
    {
        if(fieldname.equals("sort"))
            return new MyScoreDocComparator("sort",reader,fieldname);
        return null;
    }
}[/code]
SearchSort1()输出的结果没有排序,SearchSort2()就排序了。
2.多域搜索MultiFieldQueryParser
假设想输入keyword而不想关心是在哪个Field里的就能够用MultiFieldQueryParser了
用它的构造函数就可以后面的和一个Field一样。
MultiFieldQueryParser. parse(String[] queries, String[] fields, BooleanClause.Occur[] flags, Analyzer analyzer)                                          ~~~~~~~~~~~~~~~~~
第三个參数比較特殊这里也是与曾经lucene1.4.3不一样的地方
看一个样例就知道了
String[] fields = {"filename", "contents", "description"};
 BooleanClause.Occur[] flags = {BooleanClause.Occur.SHOULD,
                BooleanClause.Occur.MUST,//在这个Field里必须出现的
                BooleanClause.Occur.MUST_NOT};//在这个Field里不能出现
 MultiFieldQueryParser.parse("query", fields, flags, analyzer);

1、lucene的索引不能太大,要不然效率会非常低。大于1G的时候就必须考虑分布索引的问题

2、不建议用多线程来建索引,产生的互锁问题非常麻烦。经常发现索引被lock,无法又一次建立的情况

3、中文分词是个大问题,眼下免费的分词效果都非常差。假设有能力还是自己实现一个分词模块,用最短路径的切分方法,网上有教材和demo源代码,能够參考。

4、建增量索引的时候非常耗cpu,在訪问量大的时候会导致cpu的idle为0

5、默认的评分机制不太合理,须要依据自己的业务定制

总体来说lucene要用好不easy,必须在上述方面扩充他的功能,才干作为一个商用的搜索引擎

\

编程点滴.LUCENE的FILED选项

争取每日记录一些

Index选项

Index.ANALYZED – 索引并分词(适用于body, title, abstract等.).
Index.NOT_ANALYZED – 索引但不分词,能够使用NORM方式.(能够人为干预提权)

Index.ANALYZED_NO_NORMS – 索引并分词但不使用NORM方式(不可觉得提权)

Index.NOT_ANALYZED_NO_NORMS – 索引但不分词也不使用NORM方式(经经常使用到,存储标志值最好的方式.)

Index.NO – 不索引

Store选项

Store.YES – 存储

Store.NO  – 不存储

TermVector选项

(除TermVector.NO外其它必须要求Index选项为Index.ANALYZED或Index.NOT_ANALYZED)

TermVector.YES – 最主要的向量存储(特殊性,数量,在哪个文档)

TermVector.WITH_POSITIONS – TermVector.YES+位置
TermVector.WITH_OFFSETS – TermVector.YES+偏移

TermVector.WITH_POSITIONS_OFFSETS – TermVector.YES+位置+偏移

TermVector.NO – 不做向量存储

各选项组合应用场景

Index

Store

TermVector

事例

NOT_ANALYZ

Technorati 标签: LUCENE FIELD INDEX ANALYZED NOT_ANALYZED TermVector

ED_NO_NORMS

YES

NO

主键,电话,身份证号,URLs,日期和须要排序的字段

ANALYZED

YES

WITH_POSITIONS_OFFSETS

文档标题,摘要.

ANALYZED

NO

WITH_POSITIONS_OFFSETS

文档主体

NO

YES

NO

文档类型,数据库主键(假设不须要检索该字段的话)

NOT_ANALYZED

NO

NO

隐藏字段

排序的注意事项

假设须要排序的字段是数字就用NumericField,假设是文本,一定要记得使用FIELD.Index.NOT_ANALYZED.

假设不须要提权则应该使用NOT_ANALYZED_NO_NORMS

多值字段的保存

在同一个Document下能够给同一个字段赋不同的值.比如

Document doc = new Document();
for (int i = 0; i < authors.length; i++) {
      doc.add(new Field("author", authors[i],
                                    Field.Store.YES,
                                    Field.Index.ANALYZED));
}

LUCENE.NET QQ交流群(81361051)

Lucene  API

l  被索引的文档用Document对象表示。

l  IndexWriter通过函数addDocument将文档加入到索引中,实现                  创建索引的过程。

l  Lucene的索引是应用反向索引。

l  当用户有请求时,Query代表用户的查询语句。

l  IndexSearcher通过函数search搜索Lucene Index。

l  IndexSearcher计算term weight和score而且将结果返回给用户。

l  返回给用户的文档集合用TopDocsCollector表示。

Lucene搜索的api的类主要有4个 IndexSearcher ,Query(包括子类),QueryParser,Hits

一:IndexSearcher是搜索的入口,他的search方法提供了搜索功能
Query有非常多子类, 各种不同的子类代表了不同的查询条件,下文详述
QueryParser是一个非常通用的帮助类,他的作用是把用户输入的文本转换为内置的Query对象(大多数web搜索引擎都提供一个查询输入框来让用户输入查询条件)。QueryParser内置提供了非常多语法来使使用能够输入各种高级条件的Query。比方: "Hello AND world"会被解析为一个AND关系的BooleanQuery,他包括两个TermQuery(Hell和world)。这些语法尽管强大,但都针对英文设计,对我们须要中文搜索来说都不须要了解太多的Query类型,一般几个简单的就够用了。QueryParser的使用例如以下
QueryParser.parse(String query, String field, Analyzer analyzer) throws ParseException
当中:query是用户输入的内容,field是搜索默认的field(其它field须要显式指定),analyzer是用来将用户输入的内容也作分析处理(分词),普通情况下这里的anaylyzer是index的时候採用的同一analyzer。
另外我们也能够自己构造一个QueryParser: new QueryParser(String field, Analyzer a)(含义同上),这样做的优点是能够自定义调整一些參数.
搜索结果的处理:Hits对象
Hits对象是搜索结果的集合 主要有以下几个方法
length() ,这种方法记录有多少条结果返回(lazy loading)
doc(n) 返回第n个记录
id(in) 返回第n个记录的Document ID
score(n) 第n个记录的相关度(积分)
由于搜索的结果一般比較大,从性能上考虑,Hits对象并不会真正把全部的结果全部取回,默认情况下是保留前100个记录(对于一般的搜索引擎,100个记录足够了).
分页的处理
100条记录还是太多,我们多半会每页显示20条记录,然后分为若干页显示,对于分页,一般有两个办法
在session中保留indexreader对象和hit对象,翻页的时候提取内容
不使用session,每次都简单处理为又一次查询
lucene推荐先使用第二个办法,即每次都又一次查询,这样做的优点是简单方便,不须要考虑session的问题,lucene的查询效率也能保证每次查询时间不长,除非真正有了性能问题,否则不用考虑第一个办法。
缓存:RAMDirectory的使用方法
RAMDirectory对象非常好用,通过它,我们能够把一个普通的index全然读取到内存中,使用方法例如以下:
RAMDirectory ramDir = new RAMDirectory(dir);
这种ramdir效率自然比真正的文件系统快非常多
Lucene的scoring算法
lucence查询的纪录默认依照相关度排序,这个相关度就是score,scoring的算法是比較复杂的,对于我们做应用的人似乎没有什么帮助,(先说一下Term: 我的理解是Term为一个独立的查询词,用户输入的的查询通过各种分词,大写和小写处理(正规化),消除stopwords等)以后,会已Term为基本单位),几个关键參数略微留意一下就可以。
Term在文章中出现的频率量,包括同一个Term的文章的频率
field中的boosting參数
term的长度
term在文章中的数量
一般来说,这些參数我们都不可能去调整, 假设你想了解很多其它,IndexSearcher还提供了一个explain方法, 通过传入一个Query和document ID,你能够得到一个Explaination对象,他是对内部算法信息的简单封装,toString()一下就能够看到详细的说明

二:创建Query:各种query介绍
最普通的TermQuery
TermQuery最普通, 用Term t=new Term("contents","cap"); new TermQuery(t)就能够构造
TermQuery把查询条件视为一个key, 要求和查询内容全然匹配,比方Field.Keyword类型就能够使用TermQuery
RangeQuery
RangeQuery表示一个范围的搜索条件,RangeQuery query = new RangeQuery(begin, end, included);
最后一个boolean值表示是否包括边界条件本身, 用字符表示为"[begin TO end]" 或者"{begin TO end}"
PrefixQuery
顾名思义,就是表示以某某开头的查询, 字符表示为"something*"
BooleanQuery
这个是一个组合的Query,你能够把各种Query加入进去并标明他们的逻辑关系,加入条件用
public void add(Query query, boolean required, boolean prohibited)
方法, 后两个boolean变量是标示AND or NOT三种关系 字符表示为" AND or NOT" 或 "+ -" ,一个BooleanQuery中能够加入多个Query, 假设超过setMaxClauseCount(int)的值(默认1024个)的话,会抛出TooManyClauses错误.
PhraseQuery
表示不严格语句的查询,比方"red pig"要匹配"red fat pig","red fat big pig"等,PhraseQuery所以提供了一个setSlop()參数,在查询中,lucene会尝试调整单词的距离和位置,这个參数表示能够接受调整次数限制,假设实际的内容能够在这么多步内调整为全然匹配,那么就被视为匹配.在默认情况下slop的值是0, 所以默认是不支持非严格匹配的, 通过设置slop參数(比方"red pig"匹配"red fat pig"就须要1个slop来把pig后移动1位),我们能够让lucene来模糊查询. 值得注意的是,PhraseQuery不保证前后单词的次序,在上面的样例中,"pig red"须要2个slop,也就是假设slop假设大于等于2,那么"pig red"也会被觉得是匹配的.
WildcardQuery
使用?和*来表示一个或多个字母比方wil*能够匹配 wild ,wila ,wilxaaaa...,值得注意的是,在wildcard中,仅仅要是匹配上的纪录,他们的相关度都是一样的,比方wilxaaaa和wild的对于wil*的相关度就是一样的.
FuzzyQuery
这个Query对中文没有什么用处,他能模糊匹配英文单词(前面的都是词组),比方fuzzy和wuzzy他们能够看成相似, 对于英文的各种时态变化和复数形式,这个FuzzyQuery还算实用,匹配结果的相关度是不一样的.字符表示为 "fuzzy~"

三:QueryParser使用
对于搜索引擎, 非常多情况下用户仅仅须要一个输入框就要输入全部的查询条件(比方google), 这时,QueryParser就派上用场了,他的作用就是把各种用户输入转为Query或者Query组, 他把上面提到的Query的字符表示(Query.toString)转化为实际的Query对象,比方"wuzzy~"就会转换为FuzzyQuery, 只是QueryParser用到了Analyzer,所以QueryParser parse过后的Query再toString未必和原来的一样.Query额外的语法有:
分组:Groupping
比方"(a AND b) or C",就是括号分组,非常easy理解
FieldSelectiong
QueryParser的查询条件是对默认的Field进行的, 它在QueryParser解析的时候编码指定, 假设用户须要在查询条件中选用另外的Field, 能够使用例如以下语法: fieldname:fielda, 假设是多个分组,能够用fieldname:(fielda fieldb fieldc)表示.
*号问题
QueryParse默认不同意*号出如今開始部分,这样做的目的主要是为了防止用户误输入*来头导致严重的性能问题(会把全部记录读出)
boosting
通过hello^2.0 能够对hello这个term进行boosting,(我想不到什么用户会这样么bt)
QueryParser是一个准备好的,马上能够工作的帮助类,只是他还是提供了非常多參数供程序猿调整,首先,我们须要自己构造一个新的QueryParser,然后对他的各种參数来定制化

Lucene分析

1.创建索引的步骤:

1)把要转换为索引的磁盘上的文件转换为Luncene文档:

Document doc = File2DocumentUtils.file2Document(filePath);

转换代码

public static Document file2Document(String filePath) {

// TODO Auto-generated method stub

File file = new File(filePath);

Document doc = new Document();

doc.add(new Field("name", file.getName(), Store.YES, Index.ANALYZED));

doc.add(new Field("content", readFileContent(file), Store.YES,

Index.ANALYZED));

doc.add(new Field("size", String.valueOf(file.length()), Store.YES,

Index.ANALYZED));

doc.add(new Field("path", file.getAbsolutePath(), Store.YES,

Index.ANALYZED));

return doc;

}

读取文件内容代码

public static String readFileContent(File file) {

// TODO Auto-generated method stub

try {

BufferedReader br = new BufferedReader(new InputStreamReader(

new FileInputStream(file)));

StringBuffer buffer = new StringBuffer();

for (String line; (line = br.readLine()) != null;) {

buffer.append(line).append("\n");

}

return buffer.toString();

} catch (FileNotFoundException e) {

// TODO Auto-generated catch block

e.printStackTrace();

} catch (IOException e) {

// TODO Auto-generated catch block

e.printStackTrace();

}

return null ;

}

2)创建IndexWriter

IndexWriter indexWriter = new IndexWriter(indexPath, analyzer, true,

new MaxFieldLength(10000));

IndexWriter是用来操作(增、删、改)索引库的

3)把document文档加到IndexWriter

indexWriter.addDocument(doc);

4)关闭IndexWriter

Indexwriter。Close();

2.在索引库的搜素步骤

1)把要搜索的索引解析为query

String querystring="document";

String []fields={"name","content"};

QueryParser parser=new MultiFieldQueryParser(fields,analyzer);

//QueryParser是一个解析用户输入的工具,能够扫描用户输入的字符串,生成query对象。

Query query=parser.parse(querystring);

2)进行查询

IndexSearcher indexSearcher=new IndexSearcher(indexPath);

Filter filter=null;

TopDocs  topDocs=indexSearcher.search(query,(org.apache.lucene.search.Filter) filter,10000);

System.out.println("总共同拥有【"+topDocs.totalHits+"】条匹配结果");

注:TopDocs 依据keyword搜索整个索引库,然后对全部结果进行排序,然后取前10000条结果

3)输出搜索结果

for(ScoreDoc scoreDoc:topDocs.scoreDocs){

int docSn=scoreDoc.doc;//文档内部编号

Document doc=indexSearcher.doc(docSn);//依据编号取出对应的文档

File2DocumentUtils.printDocumentInfo(doc);//打印出文档信息

}

/**

获取name属性的值的两种方法

1.Filed f=doc.getFiled("name");

f.stringValue();

2.doc.get("name")

*/

public static void printDocumentInfo(Document doc){

//Filed f=doc.getFiled("name");

// f.stringValue();

System.out.println("-------------------------------------------");

System.out.println("name    ="+doc.get("name"));

System.out.println("content ="+doc.get("content"));

System.out.println("size     ="+doc.get("size"));

System.out.println("path     ="+doc.get("path"));

}

本文章首次公布于我的微信公众平台,想看到很多其它最新文章,欢迎关注我的公众账号“欢子说事”,账号:‘huanzi_talk’专注于:互联网分析,读者解惑,技术分析,业界新闻分析。#欢子解惑#是为读者提供一个疑惑解答平台。假设你想提问,直接复:“#欢子解惑#+你的问题进行提问。以后我每天会选择四五个问题进行回答。在查找公众账号中查询“欢子说事”关注本账号

Lucene教程具体解释的更多相关文章

  1. Lucene教程(转)

    Lucene教程 1 lucene简介1.1 什么是lucene    Lucene是一个全文搜索框架,而不是应用产品.因此它并不像www.baidu.com 或者google Desktop那么拿来 ...

  2. Lucene教程--转载

    Lucene教程 1 lucene简介1.1 什么是lucene    Lucene是一个全文搜索框架,而不是应用产品.因此它并不像www.baidu.com 或者google Desktop那么拿来 ...

  3. lucene教程简介

    1 lucene简介 1.1 什么是lucene     Lucene是一个全文搜索框架,而不是应用产品.因此它并不像www.baidu.com 或者google Desktop那么拿来就能用,它只是 ...

  4. Lucene教程

    一:简单的示例 1.1:生成索引 1.1.1:Field.Store和Field.Index 1.1.2:为数字生成索引 1.1.3:为索引加权 1.1.4:为日期生成索引 1.2:查询 1.2.1: ...

  5. lucene教程--全文检索技术

    1    Lucene 示例代码        https://blog.csdn.net/qzqanzc/article/details/80916430 2   Lucene 实例教程(一)初识L ...

  6. Lucene教程(四) 索引的更新和删除

    这篇文章是基于上一篇文章来写的,使用的是IndexUtil类,下面的例子不在贴出整个类的内容,只贴出具体的方法内容. 3.5版本: 先写了一个check()方法来查看索引文件的变化:   /**   ...

  7. Lucene教程 -------(一、初始Lucene)

    一.lucene的介绍 lucene是一个全文检索的框架,apache组织提供了一个用java实现的全文检索的开源项目.功能非常的强大,api非常简单,并且有了全文检索的功能支持可以非常方便的实现根据 ...

  8. lucene教程【转】【补】

    现实流程 lucene 相关jar包 第一个:Lucene-core-4.0.0.jar, 其中包括了常用的文档,索引,搜索,存储等相关核心代码. 第二个:Lucene-analyzers-commo ...

  9. iOS中 语音识别功能/语音转文字教程具体解释 韩俊强的博客

    原文地址:http://blog.csdn.net/qq_31810357/article/details/51111702 前言:近期研究了一下语音识别,从百度语音识别到讯飞语音识别:首先说一下个人 ...

随机推荐

  1. [状压dp]HDOJ1565 方格取数(1)

    中文题~~ 题意略 $n\le 20$ ! 很明显是状压! #include <cstdio> #include <cstdlib> #include <cstring& ...

  2. Codeforces Round #215 (Div. 1)

    A Sereja and Algorithm 题意:给定有x,y,z组成的字符串,每次询问某一段s[l, r]能否变成变成zyxzyx的循环体. 分析: 分析每一段x,y,z数目是否满足构成循环体,当 ...

  3. mac终端命令简介

    mac终端命令简介(适合刚刚入手mac的新人们) 1.取得root权限 意义相当与windows中的超级管理员权限,甚至还要超出.root权限可以修改系统中的任何文件,不过对普通用户的意义不大,了解即 ...

  4. Android java.lang.ClassCastException

    lassCastException,从字面上看,是类型转换错误,通常是进行强制类型转换时候出的错误.下面对产生ClassCastException异常的原因进行分析,然后给出这种异常的解决方法. 这种 ...

  5. 使用 jQuery.i18n.properties 实现 Web 前端的国际化

    jQuery.i18n.properties 简介 在介绍 jQuery.i18n.properties 之前,我们先来看一下什么是国际化.国际化英文单词为:Internationalization, ...

  6. 捉虫记:SHGetSpecialFolderPath返回错误码为2

    通常我们想获得系统的一些路径时,都会使用一些Shell函数.比如SHGetSpecialFolderPath,SHGetFolderPath,SHGetKnownFolderPath等,传入我们想要的 ...

  7. 我的第一个Hibernate程序

    1.建表建序列(所用数据库为Oracle,数据库名为XE,创建用户hibernate,密码为123456) conn system/manager; ; grant connect to hibern ...

  8. 【Android】Android部分问题记录

    1.EditText不显示光标 开发的时候遇到有部分手机,小米系列以及华为部分手机不显示光标. 设置EditText属性 android:textCursorDrawable="@null& ...

  9. 一步步写STM32 OS【四】OS基本框架

    一.上篇回顾 上一篇文章中,我们完成了两个任务使用PendSV实现了互相切换的功能,下面我们接着其思路往下做.这次我们完成OS基本框架,即实现一个非抢占式(已经调度的进程执行完成,然后根据优先级调度等 ...

  10. Nginx安装及配置简介

    前言 Nginx是一款轻量级的Web 服务器/反向代理服务器及电子邮件(IMAP/POP3)代理服务器,并在一个BSD-like 协议下发行.由俄罗斯的程序设计师Igor Sysoev所开发,供俄国大 ...