题目:

1183 编辑距离

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

例如将kitten一字转成sitting:

sitten (k->s)

sittin (e->i)

sitting (->g)

所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。

给出两个字符串a,b,求a和b的编辑距离。

Input

第1行:字符串a(a的长度 <= 1000)。

第2行:字符串b(b的长度 <= 1000)。

Output

输出a和b的编辑距离

Input示例

kitten

sitting

Output示例

3

分析:

首先, 对于一个状态
Dp[i][j] = min(Dp[i-1][j], min(Dp[i][j-1], Dp[i-1][j-1])) + 1;
对于当前状态, 往任何一个串后添加一个字符, 所需要的操作数 + 1的。(先不讨论相等, 不相等。)
如果 a[i] == b[j] , Dp[i][j] = min(Dp[i][j], Dp[i-1][j-1]);
两个字符相等是不需要添加任何操作的。

实现:

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1000 + 131;

int Dp[maxn][maxn];

int Solve(const string& a, const string& b) {
int n = a.length();
int m = b.length();
for(int i = 0; i < n; ++i) Dp[i][0] = i;
for(int i = 0; i < m; ++i) Dp[0][i] = i;
///
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) {
Dp[i][j] = min(Dp[i-1][j], min(Dp[i][j-1], Dp[i-1][j-1])) + 1;
if(a[i-1] == b[j-1])
Dp[i][j] = min(Dp[i][j], Dp[i-1][j-1]);
}
return Dp[n][m];
} int main() {
string s, t;
while(cin >> s >> t) {
cout << Solve(s, t) << endl;
}
}

51nod--1183 编辑距离(动态规划)的更多相关文章

  1. 51nod 1183 编辑距离(dp)

    题目链接:51nod 1183 编辑距离 #include<cstdio> #include<cstring> #include<algorithm> using ...

  2. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  3. 51nod 1183 编辑距离【线性dp+类似最长公共子序列】

    1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  4. 51NOD 1183编辑距离(动态规划)

    >>点击进入原题测试<< 思路:这个题放在基础题,分值还是零分,好歹也给人家动态规划一点面子啊!刚开始写的想法是找到其最大公共字串,然后用两个字符串中最长字符串的长度减掉最大公 ...

  5. 51nod 1183 编辑距离

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183. 题意不再赘述. 分析:大概和LCS差不多的吧   但是我用LCS ...

  6. (DP)51NOD 1183 编辑距离

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  7. 51Nod 1183 编辑距离 (字符串相似算法)

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  8. 动态规划 51nod 1183

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 1183 编辑距离  基准时间限制:1 秒 空间限制:1 ...

  9. 51 Nod 1183 编辑距离 (动态规划基础)

    原题链接:1183 编辑距离 题目分析:这个最少的操作次数,通常被称之为编辑距离."编辑距离"一次本身具有最短的意思在里面.因为题目有"最短"这样的关键词,首先 ...

  10. 51nod 简单的动态规划

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

随机推荐

  1. 基于 HTML5 WebGL 的 3D 工控裙房系统

    前言 工业物联网在中国的发展如火如荼,网络基础设施建设,以及工业升级的迫切需要都为工业物联网发展提供了很大的机遇.中国工业物联网企业目前呈现两种发展形式并存状况:一方面是大型通讯.IT企业的布局:一方 ...

  2. 深入剖析Redis系列: Redis集群模式搭建与原理详解

    前言 在 Redis 3.0 之前,使用 哨兵(sentinel)机制来监控各个节点之间的状态.Redis Cluster 是 Redis 的 分布式解决方案,在 3.0 版本正式推出,有效地解决了 ...

  3. [转帖]SAP BASIS日常需要做的工作

    SAP BASIS日常需要做的工作 https://www.cnblogs.com/swordxia/p/4790684.html SAP Basis的一些日常工作包括用户权限管理.集团管理.数据库管 ...

  4. Lodop条形码竖条和值右端不对齐的解决方法

    当Lodop条形码设置的宽度比较短,数值比较多的时候,会出现条码的竖条和右端不对齐.个人测试了一下,发现解决办法有三种:1.增加条形码的宽度.2.隐藏条码本身的值,用text文本代替.3.修改条形码下 ...

  5. java基础1之引用数据类型

    5种引用类型(对象类型) 类 接口 数组 枚举 标注 类 类在JVM的内存空间的存储 (1). Heap 堆空间:分配对象 new Student() 存放引用数据类型的实例 (2). Stack 栈 ...

  6. AJAX初识(原生JS版AJAX和Jquery版AJAX)

    一.什么是JSON 1.介绍 JSON独立于语言,是一种与语言无关的数据格式. JSON指的是JavaScript对象表示法(JavaScript Object Notation) JSON是轻量级的 ...

  7. 安全工具acunetix使用

    今天来主要介绍了安全测试工具AWVS(acunetix web vulnerability scanner)的使用 1)  安装包的下载地址:https://github.com/jiyanjiao/ ...

  8. 【CF1132G】Greedy Subsequences(线段树)

    [CF1132G]Greedy Subsequences(线段树) 题面 CF 题解 首先发现选完一个数之后选择下一个数一定是确定的. 对于每个数预处理出左侧第一个比他大的数\(L\),那么这个数加入 ...

  9. 将服务器文件上传到ftp shell操作

    date cd /home/data today_now=`date +%Y%m%d` #当前日期 cur_date=${today_now::} #echo ${cur_date} #判断是否文件生 ...

  10. JS输入框统计文字数量

    $('#articleTitle').bind('input propertychange',function () { var a = $(this).val().length; if(a>3 ...