题目:

1183 编辑距离

基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注

编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

例如将kitten一字转成sitting:

sitten (k->s)

sittin (e->i)

sitting (->g)

所以kitten和sitting的编辑距离是3。俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念。

给出两个字符串a,b,求a和b的编辑距离。

Input

第1行:字符串a(a的长度 <= 1000)。

第2行:字符串b(b的长度 <= 1000)。

Output

输出a和b的编辑距离

Input示例

kitten

sitting

Output示例

3

分析:

首先, 对于一个状态
Dp[i][j] = min(Dp[i-1][j], min(Dp[i][j-1], Dp[i-1][j-1])) + 1;
对于当前状态, 往任何一个串后添加一个字符, 所需要的操作数 + 1的。(先不讨论相等, 不相等。)
如果 a[i] == b[j] , Dp[i][j] = min(Dp[i][j], Dp[i-1][j-1]);
两个字符相等是不需要添加任何操作的。

实现:

#include <bits/stdc++.h>

using namespace std;

const int maxn = 1000 + 131;

int Dp[maxn][maxn];

int Solve(const string& a, const string& b) {
int n = a.length();
int m = b.length();
for(int i = 0; i < n; ++i) Dp[i][0] = i;
for(int i = 0; i < m; ++i) Dp[0][i] = i;
///
for(int i = 1; i <= n; ++i)
for(int j = 1; j <= m; ++j) {
Dp[i][j] = min(Dp[i-1][j], min(Dp[i][j-1], Dp[i-1][j-1])) + 1;
if(a[i-1] == b[j-1])
Dp[i][j] = min(Dp[i][j], Dp[i-1][j-1]);
}
return Dp[n][m];
} int main() {
string s, t;
while(cin >> s >> t) {
cout << Solve(s, t) << endl;
}
}

51nod--1183 编辑距离(动态规划)的更多相关文章

  1. 51nod 1183 编辑距离(dp)

    题目链接:51nod 1183 编辑距离 #include<cstdio> #include<cstring> #include<algorithm> using ...

  2. 51nod 1183 - 编辑距离 - [简单DP][编辑距离问题][Levenshtein距离问题]

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 编辑距离,又称Levenshtein距离(也叫做Edi ...

  3. 51nod 1183 编辑距离【线性dp+类似最长公共子序列】

    1183 编辑距离 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个 ...

  4. 51NOD 1183编辑距离(动态规划)

    >>点击进入原题测试<< 思路:这个题放在基础题,分值还是零分,好歹也给人家动态规划一点面子啊!刚开始写的想法是找到其最大公共字串,然后用两个字符串中最长字符串的长度减掉最大公 ...

  5. 51nod 1183 编辑距离

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183. 题意不再赘述. 分析:大概和LCS差不多的吧   但是我用LCS ...

  6. (DP)51NOD 1183 编辑距离

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  7. 51Nod 1183 编辑距离 (字符串相似算法)

    编辑距离,又称Levenshtein距离(也叫做Edit Distance),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除 ...

  8. 动态规划 51nod 1183

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1183 1183 编辑距离  基准时间限制:1 秒 空间限制:1 ...

  9. 51 Nod 1183 编辑距离 (动态规划基础)

    原题链接:1183 编辑距离 题目分析:这个最少的操作次数,通常被称之为编辑距离."编辑距离"一次本身具有最短的意思在里面.因为题目有"最短"这样的关键词,首先 ...

  10. 51nod 简单的动态规划

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

随机推荐

  1. 探寻 JavaScript 精度问题

    阅读完本文可以了解到 0.1 + 0.2 为什么等于 0.30000000000000004 以及 JavaScript 中最大安全数是如何来的. 十进制小数转为二进制小数方法 拿 173.8125 ...

  2. vue入门之编译项目

    好记性不如烂笔头,最近又开始学习vue了,编译的过程中遇到几个小坑,特此一记.     首先说一下vue项目如何编译,其实很简单,cd到项目文件夹,然后执行命令: npm run bulid 不过np ...

  3. DEVOPS 运维开发系列

    DEVOPS 运维开发系列四:ITIL事态管理流程.事态监控系统设计以及基于Devops的效率提升实践 - watermelonbig的专栏 - CSDN博客https://blog.csdn.net ...

  4. 使用Gradle构建web工程配置详解

  5. windows配置MySQL

    mysql安装.启动和基础配置 --windows版本 1.把下载好的zip文件解压到任意目录下,这个目录就是mysql的安装目录. 2.打开目录找到my-default.ini这个配置文件,复制这个 ...

  6. 洛谷 P1064 金明的预算方案 (有依赖的0/1背包)

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”. ...

  7. BSGS及扩展BSGS算法及例题

    \(BSGS(baby-step-giant-step)\)算法是用来解高次同余方程的最小非负整数解的算法,即形如这个的方程: \(a^x\equiv b(mod\ p)\) 其中\(p\)为质数(其 ...

  8. Maven pom文件标签解析大全

    <span style="padding:0px; margin:0px"><project xmlns="http://maven.apache.or ...

  9. JS学习笔记Day15

    一.ES5及ES6 (一)严格模式 (二)bind/call/apply(改变上下文this指向,都是函数对象的方法) 1.bind:返回值是一个函数 2.call:返回值是一个对象 3.apply: ...

  10. vue---mixins的用法

    相信大家都用过less.sass等预编译器.它们中也有mixins,用法也很简单,例如Less中: .box{ border:1px solid red; padding:10px; } .mixin ...