LRU原理

LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是“如果数据最近被访问过,那么将来被访问的几率也更高”。

实现1

最常见的实现是使用一个链表保存缓存数据,详细算法实现如下: 
 
1. 新数据插入到链表头部; 
2. 每当缓存命中(即缓存数据被访问),则将数据移到链表头部; 
3. 当链表满的时候,将链表尾部的数据丢弃。 
分析 
【命中率】 
当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。 
【复杂度】 
实现简单。 
【代价】 
命中时需要遍历链表,找到命中的数据块索引,然后需要将数据移到头部。

import java.util.ArrayList;
import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.Map; /**
* 类说明:利用LinkedHashMap实现简单的缓存, 必须实现removeEldestEntry方法,具体参见JDK文档
*
* @author dennis
*
* @param <K>
* @param <V>
*/
public class LRULinkedHashMap<K, V> extends LinkedHashMap<K, V> {
private final int maxCapacity; private static final float DEFAULT_LOAD_FACTOR = 0.75f; private final Lock lock = new ReentrantLock(); public LRULinkedHashMap(int maxCapacity) {
super(maxCapacity, DEFAULT_LOAD_FACTOR, true);
this.maxCapacity = maxCapacity;
} @Override
protected boolean removeEldestEntry(java.util.Map.Entry<K, V> eldest) {
return size() > maxCapacity;
}
@Override
public boolean containsKey(Object key) {
try {
lock.lock();
return super.containsKey(key);
} finally {
lock.unlock();
}
} @Override
public V get(Object key) {
try {
lock.lock();
return super.get(key);
} finally {
lock.unlock();
}
} @Override
public V put(K key, V value) {
try {
lock.lock();
return super.put(key, value);
} finally {
lock.unlock();
}
} public int size() {
try {
lock.lock();
return super.size();
} finally {
lock.unlock();
}
} public void clear() {
try {
lock.lock();
super.clear();
} finally {
lock.unlock();
}
} public Collection<Map.Entry<K, V>> getAll() {
try {
lock.lock();
return new ArrayList<Map.Entry<K, V>>(super.entrySet());
} finally {
lock.unlock();
}
}
}

实现2

LRUCache的链表+HashMap实现 

传统意义的LRU算法是为每一个Cache对象设置一个计数器,每次Cache命中则给计数器+1,而Cache用完,需要淘汰旧内容,放置新内容时,就查看所有的计数器,并将最少使用的内容替换掉。

它的弊端很明显,如果Cache的数量少,问题不会很大, 但是如果Cache的空间过大,达到10W或者100W以上,一旦需要淘汰,则需要遍历所有计算器,其性能与资源消耗是巨大的。效率也就非常的慢了。 
它的原理: 将Cache的所有位置都用双连表连接起来,当一个位置被命中之后,就将通过调整链表的指向,将该位置调整到链表头的位置,新加入的Cache直接加到链表头中。 
这样,在多次进行Cache操作后,最近被命中的,就会被向链表头方向移动,而没有命中的,而想链表后面移动,链表尾则表示最近最少使用的Cache。 
当需要替换内容时候,链表的最后位置就是最少被命中的位置,我们只需要淘汰链表最后的部分即可。 
上面说了这么多的理论, 下面用代码来实现一个LRU策略的缓存。 
非线程安全,若实现安全,则在响应的方法加锁。

import java.util.HashMap;
import java.util.Map.Entry;
import java.util.Set; public class LRUCache<K, V> { private int currentCacheSize;
private int CacheCapcity;
private HashMap<K,CacheNode> caches;
private CacheNode first;
private CacheNode last; public LRUCache(int size){
currentCacheSize = 0;
this.CacheCapcity = size;
caches = new HashMap<K,CacheNode>(size);
} public void put(K k,V v){
CacheNode node = caches.get(k);
if(node == null){
if(caches.size() >= CacheCapcity){ caches.remove(last.key);
removeLast();
}
node = new CacheNode();
node.key = k;
}
node.value = v;
moveToFirst(node);
caches.put(k, node);
} public Object get(K k){
CacheNode node = caches.get(k);
if(node == null){
return null;
}
moveToFirst(node);
return node.value;
} public Object remove(K k){
CacheNode node = caches.get(k);
if(node != null){
if(node.pre != null){
node.pre.next=node.next;
}
if(node.next != null){
node.next.pre=node.pre;
}
if(node == first){
first = node.next;
}
if(node == last){
last = node.pre;
}
} return caches.remove(k);
} public void clear(){
first = null;
last = null;
caches.clear();
} private void moveToFirst(CacheNode node){
if(first == node){
return;
}
if(node.next != null){
node.next.pre = node.pre;
}
if(node.pre != null){
node.pre.next = node.next;
}
if(node == last){
last= last.pre;
}
if(first == null || last == null){
first = last = node;
return;
} node.next=first;
first.pre = node;
first = node;
first.pre=null; } private void removeLast(){
if(last != null){
last = last.pre;
if(last == null){
first = null;
}else{
last.next = null;
}
}
}
@Override
public String toString(){
StringBuilder sb = new StringBuilder();
CacheNode node = first;
while(node != null){
sb.append(String.format("%s:%s ", node.key,node.value));
node = node.next;
} return sb.toString();
} class CacheNode{
CacheNode pre;
CacheNode next;
Object key;
Object value;
public CacheNode(){ }
} public static void main(String[] args) { LRUCache<Integer,String> lru = new LRUCache<Integer,String>(3); lru.put(1, "a"); // 1:a
System.out.println(lru.toString());
lru.put(2, "b"); // 2:b 1:a
System.out.println(lru.toString());
lru.put(3, "c"); // 3:c 2:b 1:a
System.out.println(lru.toString());
lru.put(4, "d"); // 4:d 3:c 2:b
System.out.println(lru.toString());
lru.put(1, "aa"); // 1:aa 4:d 3:c
System.out.println(lru.toString());
lru.put(2, "bb"); // 2:bb 1:aa 4:d
System.out.println(lru.toString());
lru.put(5, "e"); // 5:e 2:bb 1:aa
System.out.println(lru.toString());
lru.get(1); // 1:aa 5:e 2:bb
System.out.println(lru.toString());
lru.remove(11); // 1:aa 5:e 2:bb
System.out.println(lru.toString());
lru.remove(1); //5:e 2:bb
System.out.println(lru.toString());
lru.put(1, "aaa"); //1:aaa 5:e 2:bb
System.out.println(lru.toString());
} }

【算法】—— LRU算法的更多相关文章

  1. 缓存淘汰算法--LRU算法

    1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访问记录来进行淘汰数据,其核心思想是"如果数据最近被访问过,那么将来被访问的几率也 ...

  2. 近期最久未使用页面淘汰算法———LRU算法(java实现)

    请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次訪问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 依照 ...

  3. 最近最久未使用页面淘汰算法———LRU算法(java实现)

    请珍惜小编劳动成果,该文章为小编原创,转载请注明出处. LRU算法,即Last Recently Used ---选择最后一次访问时间距离当前时间最长的一页并淘汰之--即淘汰最长时间没有使用的页 按照 ...

  4. 使用java.util.LinkedList模拟实现内存页面置换算法--LRU算法

    一,LRU算法介绍 LRU是内存分配中“离散分配方式”之分页存储管理方式中用到的一个算法.每个进程都有自己的页表,进程只将自己的一部分页面加载到内存的物理块中,当进程在运行过程中,发现某页面不在物理内 ...

  5. 缓存淘汰算法--LRU算法(转)

    (转自:http://flychao88.iteye.com/blog/1977653) 1. LRU1.1. 原理 LRU(Least recently used,最近最少使用)算法根据数据的历史访 ...

  6. 《算法 - Lru算法》

    一:概述 - LRU 用于管理缓存策略,其本身在 Linux/Redis/Mysql 中均有实现.只是实现方式不尽相同. - LRU 算法[Least recently used(最近最少使用)] - ...

  7. 【算法】LRU算法

    缓存一般存放的都是热点数据,而热点数据又是利用LRU(最近最久未用算法)对不断访问的数据筛选淘汰出来的. 出于对这个算法的好奇就查了下资料. LRU算法四种实现方式介绍 缓存淘汰算法 利用Linked ...

  8. Redis的LRU算法

    Redis的LRU算法 LRU算法背后的的思想在计算机科学中无处不在,它与程序的"局部性原理"很相似.在生产环境中,虽然有Redis内存使用告警,但是了解一下Redis的缓存使用策 ...

  9. Android图片缓存之Lru算法

    前言: 上篇我们总结了Bitmap的处理,同时对比了各种处理的效率以及对内存占用大小.我们得知一个应用如果使用大量图片就会导致OOM(out of memory),那该如何处理才能近可能的降低oom发 ...

  10. 操作系统 页面置换算法LRU和FIFO

    LRU(Least Recently Used)最少使用页面置换算法,顾名思义,就是替换掉最少使用的页面. FIFO(first in first out,先进先出)页面置换算法,这是的最早出现的置换 ...

随机推荐

  1. 配置javaJDK环境

    1.官网下载JDK包 2.解压包 3.打开vi /etc/profile文件添加一下内容 export JAVA_HOME=/usr/jdk1.8.0_121 #你的jdk所在的目录 export C ...

  2. 关于我的博客(About My Blogs)

    本文算是第一篇文章,记录工作/学习/生活中的觉得值得分享的东西 When,Where,Who,What,How,Why,尽可能每篇博文当作一个事件来描述. 也就是触发想写这篇文章的事件. 要坚持下来写 ...

  3. ArcGIS 10.0发布缓存地图服务(详细版)

    1.软件准备ArcGIS Destop10.0,ArcGIS Server10.0,Windows系统下自带的IIS6.0以上服务器 1)安装ArcGIS Destop10.0软件,选择完全安装,安装 ...

  4. docker 学习资料收集

    Docker中文网 http://www.docker.org.cn/book/ docker镜像怎么迁移到其他的服务器 http://www.talkwithtrend.com/Question/1 ...

  5. Android + https 实现 文件上传

    package com.example.wbdream.zigvine; import android.annotation.SuppressLint; import android.app.Acti ...

  6. 使用 Browser-solidity 在 Go-Ethereum1.7.2 上进行简单的智能合约部署

    目录 目录 1.基本概念 1.1.什么是智能合约? 1.2.什么是Solidity? 1.2.1.Solidity的语言特性 1.3.什么是 Browser-solidity? 2.Browser-s ...

  7. TomCat的安装及测试

    1.每个版本的安装都是一样,解压之后是一个文件夹 2.配置环境变量,右击我的电脑,属性--高级属性设置--环境变量--新建--配path即可(path后加;%CATALINA_HOME%\bin;) ...

  8. 【原】Java学习笔记006 - 流程控制

    package cn.temptation; public class Sample01 { public static void main(String[] args) { // 需求:写一万次&q ...

  9. python_库学习_02_微信自动回复机器人

    一.python发展的趋势日益庞大,微信也有对应的库itchat.这次的实例做做成可在任意电脑运行的微信自动回复机器人exe.文件. 二.完成这个小应用我们需要装一些库,, itchat:这个东东不出 ...

  10. 进程命令(tasklist)

    TaskList命令: // 描述: 显示本地或远程计算机上正在运行的进程列表信息. // 语法: tasklist [/s <computer> [ /u [<domain> ...