设\(S\)是一个集合,\(\max(S)\)和\(\min(S)\)分别表示集合中的最大值与最小值。

那么有如下式子成立:
\[\max(S)=\sum_{T \subseteq S}(-1)^{|T|+1}\min(T)\]
\[\min(S)=\sum_{T \subseteq S}(-1)^{|T|+1}\max(T)\]

因为证明很简单就写一下吧,以第一个式子为例,设\(\max(S)=x\),那么只有\(T=\{x\}\)时的\(\min(T)\)为\(x\)(可能有多个相同的最大值,这时候随便钦点一个就可以了),对于除此之外的所有\(T\),肯定至少存在一个集合中的数\(y\)使得\(\min(T \cup \{y\})=\min(T)\),假设有\(k\)个这样的\(y\),那么从中选奇数个和选偶数个的方案数是一样的,于是\(\min(T)\)就被抵消了。

这个式子在期望下也是成立的,即:
\[E[\max(S)]=\sum_{T \subseteq S}(-1)^{|T|+1}E[\min(T)]\]

用期望的线性性证明即可。

于是就可以用来做题了,一般的套路是每个位置有概率从\(0\)变成\(1\),问都变成\(1\)的期望步数,这就是\(\max(S)\),然后就反演成\(\min(T)\),至少一个数变成\(1\)的期望就好做很多了。

\(upd\):来填坑了...现在来介绍一下最值反演的推广:通过求\(\min\)来求第\(k\)大(\(kth\max\))。前置知识是二项式反演,如果不知道请戳这里

我们来尝试构造一个函数\(f\),使得:

\[kth\max(S)=\sum_{T \subseteq S} f_{|T|}\min(T)\]

然后来考虑一下对于集合中第\(i\)大的元素,如果\(\min(T)\)等于这个元素,那么只有比它大的\(i-1\)个元素是可能存在的,那么它的贡献就是:

\[\sum_{j=0}^{i-1} {i-1 \choose j} f_{j+1}\]

也就是说\(f\)需要满足:

\[\sum_{j=0}^{i-1} {i-1 \choose j} f_{j+1}=[i=k]\]

等价于:

\[\sum_{j=0}^i {i \choose j} f_{j+1}=[i=k-1]\]

为了方便我们用\(\widehat f_i=f_{i+1}\)替换\(f\),然后用\(g_i\)表示\([i=k-1]\),那么就得到:

\[\sum_{j=0}^i {i \choose j} \widehat f_j=g_i\]

看这个是不是一个经典的二项式反演的形式呀,所以二项式反演一下:

\[\widehat f_i=\sum_{j=0}^i (-1)^{i-j} {i \choose j} g_j\]

然后因为\(g_i=[i=k-1]\),所以上面的式子只有\(j=k-1\)这一项是有贡献的,我们再把\(f\)替换回去,得:

\[f_{i+1}=(-1)^{i-k+1} {i \choose k-1}\]

再把\(f_{i+1}\)替换成\(f_i\),最终得到:

\[f_i=(-1)^{i-k} {i-1 \choose k-1}\]

终于结束啦!

\[kth\max(S)=\sum_{T \subseteq S} (-1)^{|T|-k} {|T|-1 \choose k-1} \min(T)\]

同时我们可以发现如果要求第\(k\)大,那么只需要计算元素个数\(\geq k\)的子集就可以了。

min-max容斥/最值反演及其推广的更多相关文章

  1. [HDU4336]Card Collector(min-max容斥,最值反演)

    Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  2. HDU 1695 GCD 欧拉函数+容斥定理 || 莫比乌斯反演

    GCD Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  3. BZOJ 2005 [Noi2010]能量采集 (数学+容斥 或 莫比乌斯反演)

    2005: [Noi2010]能量采集 Time Limit: 10 Sec  Memory Limit: 552 MBSubmit: 4493  Solved: 2695[Submit][Statu ...

  4. BZoj 2301 Problem b(容斥定理+莫比乌斯反演)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MB Submit: 7732  Solved: 3750 [Submi ...

  5. 【容斥原理,莫比乌斯反演】用容斥替代莫比乌斯反演第二种形式解决gcd统计问题

    名字虽然很长.但是其实很简单,对于这一类问题基本上就是看你能不能把统计的公式搞出来(这时候需要一个会推公式的队友) 来源于某次cf的一道题,盼望上紫的我让潘学姐帮我代打一道题,她看了看跟我说了题解,用 ...

  6. hdu1695(容斥 or 莫比乌斯反演)

    刚开始看题,想了一会想到了一种容斥的做法.复杂度O( n(3/2) )但是因为题目上说有3000组测试数据,然后吓尿.完全不敢写. 然后想别的方法. 唉,最近精神有点问题,昨天从打完bc开始想到1点多 ...

  7. ZOJ 3868 GCD Expectation (容斥+莫比乌斯反演)

    GCD Expectation Time Limit: 4 Seconds     Memory Limit: 262144 KB Edward has a set of n integers {a1 ...

  8. LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演

    传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...

  9. 【CF900D】Unusual Sequences 容斥(莫比乌斯反演)

    [CF900D]Unusual Sequences 题意:定义正整数序列$a_1,a_2...a_n$是合法的,当且仅当$gcd(a_1,a_2...a_n)=x$且$a_1+a_2+...+a_n= ...

随机推荐

  1. JS、CSS中的相对路径

    css中url(../images/1.jpg)路径是相对于index.css的 js中url(images/1.jpg)路径是相对于index.html的,并不是相对于index.js

  2. 利用OpenStreetMap(OSM)数据搭建一个地图服务

     http://www.cnblogs.com/LBSer/p/4451471.html 图 利用OSM数据简单发布的北京地图服务   一.OSM是什么 开放街道图(OpenStreetMap,简称O ...

  3. Ansible第一篇:介绍及安装

    Ansible介绍 Ansible是个什么东西呢?官方的title是"Ansible is Simple IT Automation"--简单的自动化IT工具.ansible基于P ...

  4. C#中的yield return用法演示源码

    下边代码段是关于C#中的yield return用法演示的代码. using System;using System.Collections;using System.Collections.Gene ...

  5. Several ports (8005, 8080, 8009) required by Tomcat v9.0 Server at localhost

    Several ports (8005, 8080, 8009) required by Tomcat v9.0 Server at localhost 问题:Tomcat服务器的端口被占用 解决: ...

  6. 什么是基于风险的测试(RBT)?

    基于风险的测试(Risk-based testing) 文/杨学明 一.基于风险的测试起源 基于风险的测试起源,在软件测试领域,基于风险测试最早的是测试大师Boris Beizer<软件测试技术 ...

  7. Spark之Yarn提交模式

    一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examp ...

  8. python正则表达式相关记录

    1 python中字符串前加‘r’,即可阻止‘\’导致的字符转义.但是在re.sub()中参数中加'r'不会起作用.

  9. 英语口语练习系列-C08-考试

    <蒹葭>-诗经 蒹葭苍苍,白露为霜.所谓伊人,在水一方.溯洄从之,道阻且长.溯游从之,宛在水中央. 蒹葭萋萋,白露未晞.所谓伊人,在水之湄.溯洄从之,道阻且跻.溯游从之,宛在水中坻. 蒹葭 ...

  10. 浏览器各个版本和系统(chrome/safari/edge/qq/360)

    浏览器对象: let userAgent = navigator.userAgent.toLowerCase()console.log(userAgent) Edge: mozilla/5.0 (wi ...