题意:走马步,要求向右向下,不能走进禁止的点。求方案数。

  思路:若是n*m比较小的话,那么可以直接DP。但是这道题目不行。不过我们仔细分析可以知道从某个点到某个点是一个组合数,但是数据太大,mod值很小,所以只能用Lucas定理。然后DP一下到某个点不经过之前的点的方案数一直推下去就可以得到最终答案了。

#include<bits/stdc++.h>
using namespace std; typedef long long ll; const int maxn = 1e3 + ;
const int maxm = 2e5 + ;
const int mod = ; ll fac[maxm], refac[maxm], dp[maxm]; ll mypow(ll a, ll p, ll mo){
ll ret = ;
while(p){
if(p & ) ret = ret * a % mo;
a = a * a % mo;
p >>= ;
}
return ret;
} void init(){
refac[] = refac[] = fac[] = fac[] = 1LL;
for(int i = ; i < mod; i ++) fac[i] = 1LL * fac[i - ] * i % mod;
refac[mod - ] = mypow(fac[mod - ], mod - , mod);
for(int i = mod - ; i > ; i --) refac[i] = 1LL * refac[i + ] * (i + ) % mod;
} ll comb(int a, int b){
if(a < b) return ;
return fac[a] * refac[b] % mod * refac[a - b] % mod;
} ll lucas(ll n, ll m){
if(!m) return ;
return comb(n % mod, m % mod) * lucas(n/mod, m/mod) % mod;
} struct P{
ll x, y;
P(){}
P(ll a, ll b):x(a), y(b){}
bool operator < (const P & t) const{
return x + y < t.x + t.y;
}
bool check(const P & t){
if(x <= t.x || y <= t.y) return false;
ll a = x - t.x, b = y - t.y ;
if((a + b) % != || a > * b || * a < b) return false;
return true;
}
ll cnt(const P & t){
ll dx = x - t.x, dy = y - t.y;
ll step = (dx + dy) / ;
return lucas(step, dx - step);
}
};
P in[maxn]; int main(){
init();
int ncase = ;
ll n, m;
int k; while(~scanf("%lld%lld%d", &n, &m, &k)){
memset(dp, , sizeof(dp));
bool flag = true;
for(int i = ; i < k; i ++) {
scanf("%lld%lld", &in[i].x, &in[i].y);
if(in[i].x == n && in[i].y == m) flag = false;
}
if(!flag) {
printf("Case #%d: 0\n", ncase ++);
continue;
}
if(n == && m == ) {
printf("Case #%d: %lld\n", ncase ++, 1LL);
continue;
}
sort(in, in + k);
in[k].x = n, in[k].y = m;
for(int i = ; i <= k; i ++){
if(!in[i].check(P(, ))) continue;
dp[i] = in[i].cnt(P(, ));
for(int j = ; j < i; j ++){
if(!dp[j] || !in[i].check(in[j])) continue;
dp[i] = ((dp[i] - dp[j] * in[i].cnt(in[j])) % mod + mod ) % mod;
}
}
printf("Case #%d: %lld\n", ncase ++, dp[k]);
}
return ;
}

A Simple Chess (Lucas组合数 + 容斥)的更多相关文章

  1. Codeforces 100548F - Color (组合数+容斥)

    题目链接:http://codeforces.com/gym/100548/attachments 有n个物品 m种颜色,要求你只用k种颜色,且相邻物品的颜色不能相同,问你有多少种方案. 从m种颜色选 ...

  2. hdu_5794_A Simple Chess(lucas+dp)

    题目链接:hdu_5794_A Simple Chess 题意: 给你n,m,从(1,1)到(n,m),每次只能从左上到右下走日字路线,有k(<=100)的不能走的位置,问你有多少方案 题解: ...

  3. bzoj3782上学路线(Lucas+CRT+容斥DP+组合计数)

    传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3782 有部分分的传送门:https://www.luogu.org/problemnew/ ...

  4. BZOJ5306 [HAOI2018]染色 【组合数 + 容斥 + NTT】

    题目 为了报答小 C 的苹果, 小 G 打算送给热爱美术的小 C 一块画布, 这块画布可 以抽象为一个长度为 \(N\) 的序列, 每个位置都可以被染成 \(M\) 种颜色中的某一种. 然而小 C 只 ...

  5. 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥

    [BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...

  6. cf997C. Sky Full of Stars(组合数 容斥)

    题意 题目链接 \(n \times n\)的网格,用三种颜色染色,问最后有一行/一列全都为同一种颜色的方案数 Sol Orz fjzzq 最后答案是这个 \[3^{n^2} - (3^n - 3)^ ...

  7. HDU - 5201 :The Monkey King (组合数 & 容斥)

    As everyone known, The Monkey King is Son Goku. He and his offspring live in Mountain of Flowers and ...

  8. CodeForces - 285E: Positions in Permutations(DP+组合数+容斥)

    Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive in ...

  9. 【BZOJ2839】集合计数 组合数+容斥

    [BZOJ2839]集合计数 Description 一个有N个元素的集合有2^N个不同子集(包含空集),现在要在这2^N个集合中取出若干集合(至少一个),使得它们的交集的元素个数为K,求取法的方案数 ...

随机推荐

  1. Python线性表——单链表

    1. 线性表简介 线性表是一种线性结构,它是由零个或多个数据元素构成的有限序列.线性表的特征是在一个序列中,除了头尾元素,每个元素都有且只有一个直接前驱,有且只有一个直接后继,而序列头元素没有直接前驱 ...

  2. XV Open Cup named after E.V. Pankratiev. GP of Three Capitals

    A. Add and Reverse 要么全部都选择$+1$,要么加出高$16$位后翻转位序然后再补充低$16$位. #include<stdio.h> #include<iostr ...

  3. priority_queue和sort应用

    #include"iostream" #include"String" #include"stdio.h" #include "s ...

  4. Java课程寒假之回答问题:如何将你的兴趣化为可以立足于社会的资本

    在学校的时候干过几次兼职,算是无聊时候的外快吧,有一次是去辅导机构,在考试期间监考学生,前后大概四个小时,最后拿了四十五并且管了一顿饭,不得不说,小学生是真的皮,考试的时候有的爱讲话,有的是写完之后开 ...

  5. javascript的数组之reduce()

    reduce()方法对累加器和数组中的每个元素(从左到右)应用到一个函数中,最终得到一个值并返回 const array1 = [1, 2, 3, 4]; const reducer = (accum ...

  6. andorid简易定位

    权限: <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"></use ...

  7. css学习_css BFC特性(块级格式化上下文)

    块级元素会有bfc条件------可以触发bfc--------利用bfc的特性来解决一些问题 1.什么是BFC? 就是一个封闭独立的渲染的区域 2.什么元素会有BFC的条件? ---块级元素会有,行 ...

  8. [05-02]红帽linux常用操作命令

    命令怎么用(三种方式) shutdown --help shutdown --? man shutdown  (man 就是manual  手册, 指南) 服务 service 怎么知道服务的名字呢? ...

  9. WEB日期控件

    http://www.cnblogs.com/jiangbei/p/7270788.html 日期控件——my97 <div class="form-group">   ...

  10. odoo定时发送邮件

    采购订单延迟或者存在部分到货的情况,定时发送邮件给相关人员 包含,采购订单明细,订单数量,已到货数量,未到货数量 <?xml version="1.0" encoding=& ...