Given a directed, acyclic graph of N nodes.  Find all possible paths from node 0 to node N-1, and return them in any order.

The graph is given as follows:  the nodes are 0, 1, ..., graph.length - 1.  graph[i] is a list of all nodes j for which the edge (i, j) exists.

Example:
Input: [[1,2], [3], [3], []]
Output: [[0,1,3],[0,2,3]]
Explanation: The graph looks like this:
0--->1
| |
v v
2--->3
There are two paths: 0 -> 1 -> 3 and 0 -> 2 -> 3.

Note:

  • The number of nodes in the graph will be in the range [2, 15].
  • You can print different paths in any order, but you should keep the order of nodes inside one path.

这道题给了我们一个无回路有向图,包含N个结点,然后让我们找出所有可能的从结点0到结点N-1的路径。这个图的数据是通过一个类似邻接链表的二维数组给的,最开始的时候博主没看懂输入数据的意思,其实很简单,我们来看例子中的input,[[1,2], [3], [3], []],这是一个二维数组,最外层的数组里面有四个小数组,每个小数组其实就是和当前结点相通的邻结点,由于是有向图,所以只能是当前结点到邻结点,反过来不一定行。那么结点0的邻结点就是结点1和2,结点1的邻结点就是结点3,结点2的邻结点也是3,结点3没有邻结点。那么其实这道题的本质就是遍历邻接链表,由于要列出所有路径情况,那么递归就是不二之选了。我们用cur来表示当前遍历到的结点,初始化为0,然后在递归函数中,先将其加入路径path,如果cur等于N-1了,那么说明到达结点N-1了,将path加入结果res。否则我们再遍历cur的邻接结点,调用递归函数即可,参见代码如下:

解法一:

class Solution {
public:
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
vector<vector<int>> res;
helper(graph, , {}, res);
return res;
}
void helper(vector<vector<int>>& graph, int cur, vector<int> path, vector<vector<int>>& res) {
path.push_back(cur);
if (cur == graph.size() - ) res.push_back(path);
else for (int neigh : graph[cur]) helper(graph, neigh, path, res);
}
};

下面这种解法也是递归,不过写法稍有不同,递归函数直接返回结果,这样参数就少了许多,但是思路还是一样的,如果cur等于N-1了,直接将cur先装入数组,再装入结果res中返回。否则就遍历cur的邻接结点,对于每个邻接结点,先调用递归函数,然后遍历其返回的结果,对于每个遍历到的path,将cur加到数组首位置,然后将path加入结果res中即可,这有点像是回溯的思路,路径是从后往前组成的,参见代码如下:

解法二:

class Solution {
public:
vector<vector<int>> allPathsSourceTarget(vector<vector<int>>& graph) {
return helper(graph, );
}
vector<vector<int>> helper(vector<vector<int>>& graph, int cur) {
if (cur == graph.size() - ) {
return {{graph.size() - }};
}
vector<vector<int>> res;
for (int neigh : graph[cur]) {
for (auto path : helper(graph, neigh)) {
path.insert(path.begin(), cur);
res.push_back(path);
}
}
return res;
}
};

类似题目:

https://leetcode.com/problems/all-paths-from-source-to-target/solution/

https://leetcode.com/problems/all-paths-from-source-to-target/discuss/121135/6-lines-C++-dfs

https://leetcode.com/problems/all-paths-from-source-to-target/discuss/118691/Easy-and-Concise-DFS-Solution-C++-2-line-Python

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] All Paths From Source to Target 从起点到目标点到所有路径的更多相关文章

  1. 【LeetCode】797. All Paths From Source to Target 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 回溯法 日期 题目地址:https://leetco ...

  2. LeetCode 797. All Paths From Source to Target

    题目链接:https://leetcode.com/problems/all-paths-from-source-to-target/description/ Given a directed, ac ...

  3. 75th LeetCode Weekly Contest All Paths From Source to Target

    Given a directed, acyclic graph of N nodes.  Find all possible paths from node 0 to node N-1, and re ...

  4. 【leetcode】All Paths From Source to Target

    题目如下: Given a directed, acyclic graph of N nodes. Find all possible paths from node 0 to node N-1, a ...

  5. 【leetcode】797. All Paths From Source to Target

    Given a directed acyclic graph (DAG) of n nodes labeled from 0 to n - 1, find all possible paths fro ...

  6. [Swift]LeetCode797. 所有可能的路径 | All Paths From Source to Target

    Given a directed, acyclic graph of N nodes.  Find all possible paths from node 0 to node N-1, and re ...

  7. LeetCode 1059. All Paths from Source Lead to Destination

    原题链接在这里:https://leetcode.com/problems/all-paths-from-source-lead-to-destination/ 题目: Given the edges ...

  8. LeetCode: Unique Paths II 解题报告

    Unique Paths II Total Accepted: 31019 Total Submissions: 110866My Submissions Question Solution  Fol ...

  9. LeetCode OJ--Unique Paths II **

    https://oj.leetcode.com/problems/unique-paths-ii/ 图的深搜,有障碍物,有的路径不通. 刚开始想的时候用组合数算,但是公式没有推导出来. 于是用了深搜, ...

随机推荐

  1. [物理学与PDEs]第5章习题1 矩阵的极分解

    证明引理 2. 1. 证明: (1)  先证明存在正交阵 ${\bf P},{\bf Q}$ 及对角阵 ${\bf D}$ 使得 $$\bex {\bf F}={\bf P}{\bf D}{\bf Q ...

  2. vue构造函数(根实例化时和组件实例对象选项)参数:选项详解

    实例选项(即传给构造函数的options):数据,DOM,生命周期钩子函数,资源,组合,其他 数据 data 属性能够响应数据变化,当这些数据改变时,视图会进行重渲染. 访问方式: 1.通过 vm.$ ...

  3. Windows下VSCode编译调试c/c++

    参考链接:  https://blog.csdn.net/c_duoduo/article/details/51615381 支持makefile编译: https://www.cnblogs.com ...

  4. WebService - [Debug] javax.xml.ws.WebServiceException: Undefined port type

    背景: 使用JDK来开发java web service (Create a SOAP-based RPC style web service endpoint by using JAX-WS). 具 ...

  5. windows下实现定时重启Apache与MySQL方法

    采用at命令添加计划任务.有关使用语法可以到window->“开始”->运行“cmd”->执行命令“at /”,这样界面中就会显示at命令的语法.下面我们讲解下如何让服务器定时启动a ...

  6. sort algorithms

    //todo #include<iostream> void swap(int *a, int *b){int temp = *a; *a = *b; *b = temp;} ; i &l ...

  7. 【原创】Linux基础之iptables

    iptables 1.4.21 官方:https://www.netfilter.org/projects/iptables/index.html iptables is the userspace ...

  8. redis 资料

    redis是什么: Redis is an open source, BSD licensed, advanced key-value store. It is often referred to a ...

  9. 商品规格笛卡尔积PHP

    <?php $color = array('red', 'green'); $size = array(39, 40, 41); $local = array('beijing', 'shang ...

  10. 解决爬虫中遇到的js加密问题之有道登录js逆向解析

    具体实现在github上面(有详细的步骤): https://github.com/WYL-BruceLong/Spider_JS_ReverseParsin