1、Spark优化

1) 使用foreachPartitions替代foreach。

原理类似于“使用mapPartitions替代map”,也是一次函数调用处理一个partition的所有数据,而不是一次函数调用处理一条数据。在实践中发现,foreachPartitions类的算子,对性能的提升还是很有帮助的。比如在foreach函数中,将RDD中所有数据写MySQL,那么如果是普通的foreach算子,就会一条数据一条数据地写,每次函数调用可能就会创建一个数据库连接,此时就势必会频繁地创建和销毁数据库连接,性能是非常低下;但是如果用foreachPartitions算子一次性处理一个partition的数据,那么对于每个partition,只要创建一个数据库连接即可,然后执行批量插入操作,此时性能是比较高的。实践中发现,对于1万条左右的数据量写MySQL,性能可以提升30%以上。

2) 设置num-executors参数

参数说明:该参数用于设置Spark作业总共要用多少个Executor进程来执行。Driver在向YARN集群管理器申请资源时,YARN集群管理器会尽可能按照你的设置来在集群的各个工作节点上,启动相应数量的Executor进程。这个参数非常之重要,如果不设置的话,默认只会给你启动少量的Executor进程,此时你的Spark作业的运行速度是非常慢的。

 

参数调优建议:该参数设置的太少,无法充分利用集群资源;设置的太多的话,大部分队列可能无法给予充分的资源。针对数据交换的业务场景,建议该参数设置1-5。

3) 设置executor-memory参数

参数说明:该参数用于设置每个Executor进程的内存。Executor内存的大小,很多时候直接决定了Spark作业的性能,而且跟常见的JVM OOM异常也有直接的关联。

 

参数调优建议:针对数据交换的业务场景,建议本参数设置在512M及以下。

4) executor-cores

参数说明:该参数用于设置每个Executor进程的CPU core数量。这个参数决定了每个Executor进程并行执行task线程的能力。因为每个CPU core同一时间只能执行一个task线程,因此每个Executor进程的CPU core数量越多,越能够快速地执行完分配给自己的所有task线程。

参数调优建议:Executor的CPU core数量设置为2~4个较为合适。建议,如果是跟他人共享一个队列,那么num-executors * executor-cores不要超过队列总CPU core的1/3~1/2左右比较合适,避免影响其他人的作业运行。

5) driver-memory

参数说明:该参数用于设置Driver进程的内存。

参数调优建议:Driver的内存通常来说不设置,或者设置512M以下就够了。唯一需要注意的一点是,如果需要使用collect算子将RDD的数据全部拉取到Driver上进行处理,那么必须确保Driver的内存足够大,否则会出现OOM内存溢出的问题。

6) spark.default.parallelism

参数说明:该参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能。

参数调优建议:如果不设置这个参数, Spark自己根据底层HDFS的block数量来设置task的数量,默认是一个HDFS block对应一个task。Spark官网建议的设置原则是,设置该参数为num-executors * executor-cores的2~3倍较为合适,此时可以充分地利用Spark集群的资源。针对数据交换的场景,建议此参数设置为1-10。

7) spark.storage.memoryFraction

参数说明:该参数用于设置RDD持久化数据在Executor内存中能占的比例,默认是0.6。也就是说,默认Executor 60%的内存,可以用来保存持久化的RDD数据。根据你选择的不同的持久化策略,如果内存不够时,可能数据就不会持久化,或者数据会写入磁盘。

参数调优建议:如果Spark作业中,有较多的RDD持久化操作,该参数的值可以适当提高一些,保证持久化的数据能够容纳在内存中。避免内存不够缓存所有的数据,导致数据只能写入磁盘中,降低了性能。但是如果Spark作业中的shuffle类操作比较多,而持久化操作比较少,那么这个参数的值适当降低一些比较合适。如果发现作业由于频繁的gc导致运行缓慢(通过spark web ui可以观察到作业的gc耗时),意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。针对数据交换的场景,建议降低此参数值到0.2-0.4。

8) spark.shuffle.memoryFraction

参数说明:该参数用于设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例,默认是0.2。也就是说,Executor默认只有20%的内存用来进行该操作。shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。

参数调优建议:如果Spark作业中的RDD持久化操作较少,shuffle操作较多时,建议降低持久化操作的内存占比,提高shuffle操作的内存占比比例,避免shuffle过程中数据过多时内存不够用,必须溢写到磁盘上,降低了性能。如果发现作业由于频繁的gc导致运行缓慢,意味着task执行用户代码的内存不够用,那么同样建议调低这个参数的值。针对数据交换的场景,建议此值设置为0.1或以下。

资源参数参考示例

以下是一份spark-submit命令的示例,可以参考一下,并根据自己的实际情况进行调节:

./bin/spark-submit \

--master yarn-cluster \

--num-executors 1 \

--executor-memory 512M \

--executor-cores 2 \

--driver-memory 512M \

--conf spark.default.parallelism=2 \

--conf spark.storage.memoryFraction=0.2 \

--conf spark.shuffle.memoryFraction=0.1 \

2、Spark对磁盘的要求

1) 设置独立的日志分区

说明开源Spark 的Job任务在运行过程中产生大量的临时日志,导致某个分区磁盘写满,主要原因spark运行产生临时目录的默认路径/tmp/下的spark-*日志会把/分区磁盘写满。

优化建议更改日志路径到独立的分区。

修改方法

可以通过在$SPARK_HOME/conf/spark-env.sh中指定配置内容来更改默认的存储位置。

SPARK_WORK_DIR 指定work目录,默认是$SPARK_HOME/work子目录

SPARK_LOCAL_DIRS 指定executor运行生成的临时文件目录,默认是/tmp,由于/tmp目录有可能是采用了tmpfs,建议在实际部署中将其更改到其它目录

修改配置spark-env.sh增加:

export SPARK_LOCAL_DIRS=spark.local.dir /diskb/sparktmp,/diskc/sparktmp,/diskd/sparktmp,/diske/sparktmp,/diskf/sparktmp,/diskg/sparktmp

---------------------

2) Spark磁盘临时文件自动清理

(1) SPARK_LOCAL_DIRS下的产生的文件夹,会在应用程序退出的时候自动清理掉,如果观察仔细的话,还会发现在spark_local_dirs目录有有诸如*_cache和*_lock的文件, *_cache文件是为了避免同一台机器中多个executor执行同一application时多次下载第三方依赖的问题而引进的patch。

(2) SPARK_WORK_DIR目录下的形如app-timestamp-seqid的文件夹默认不会自动清除。可同通过在spark-env.sh中加入如下内容来自动清除:

SPARK_WORKER_OPTS=”-Dspark.worker.cleanup.enabled=true –Dspark.workder.cleanup.interval=1200”

停止掉的程序文件夹就会被删除。

(3) 可以通过配置spark.worker.cleaner.appDataTtl来设置清理的时间。

(4) SPARK_WORKER_OPTS支持以下属性:

属性名

默认值

含义

spark.worker.cleanup.enabled

false

是否定期清理 worker 和应用的工作目录。注意,该设置仅在独立模式下有效,YARN有自己的清理方式;同时,只会清理已经结束的应用对应的目录。

spark.worker.cleanup.interval

1800 (30 minutes)

worker清理本地应用工作目录的时间间隔(秒)

spark.worker.cleanup.appDataTtl

7 * 24 * 3600 (7 days)

清理多久以前的应用的工作目录。这个选项值将取决于你的磁盘总量。spark应用会将日志和jar包都放在其对应的工作目录下。随着时间流逝,应用的工作目录很快会占满磁盘,尤其是在你的应用提交比较频繁的情况下。

Spark性能优化的更多相关文章

  1. 【转载】Spark性能优化指南——高级篇

    前言 数据倾斜调优 调优概述 数据倾斜发生时的现象 数据倾斜发生的原理 如何定位导致数据倾斜的代码 查看导致数据倾斜的key的数据分布情况 数据倾斜的解决方案 解决方案一:使用Hive ETL预处理数 ...

  2. 【转载】 Spark性能优化指南——基础篇

    转自:http://tech.meituan.com/spark-tuning-basic.html?from=timeline 前言 开发调优 调优概述 原则一:避免创建重复的RDD 原则二:尽可能 ...

  3. 【转】【技术博客】Spark性能优化指南——高级篇

    http://mp.weixin.qq.com/s?__biz=MjM5NjQ5MTI5OA==&mid=2651745207&idx=1&sn=3d70d59cede236e ...

  4. 【转】Spark性能优化指南——基础篇

    http://mp.weixin.qq.com/s?__biz=MjM5NDMwNjMzNA==&mid=2651805828&idx=1&sn=2f413828d1fdc6a ...

  5. Spark性能优化指南——高级篇(转载)

    前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为<Spark性能优化指南>的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问 ...

  6. Spark性能优化指南——基础篇(转载)

    前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一.Spark的功能涵盖了大数据领域的离线批处理.SQL类处理.流式/实时计算.机器学习.图计算等各种不同类型的计算操作 ...

  7. Spark性能优化指南-高级篇

    转自https://tech.meituan.com/spark-tuning-pro.html,感谢原作者的贡献 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作 ...

  8. Spark性能优化指南——基础篇

    本文转自:http://tech.meituan.com/spark-tuning-basic.html 感谢原作者 前言 在大数据计算领域,Spark已经成为了越来越流行.越来越受欢迎的计算平台之一 ...

  9. Spark性能优化指南——高级篇

    本文转载自:https://tech.meituan.com/spark-tuning-pro.html 美团技术点评团队) Spark性能优化指南——高级篇 李雪蕤 ·2016-05-12 14:4 ...

  10. Spark记录-Spark性能优化解决方案

    Spark性能优化的10大问题及其解决方案 问题1:reduce task数目不合适解决方式:需根据实际情况调节默认配置,调整方式是修改参数spark.default.parallelism.通常,r ...

随机推荐

  1. 第六节:框架搭建之EF的Fluent Api模式的使用流程

    一. 前言 沉寂了约一个月的时间,今天用一篇简单的文章重新回归博客,主要来探讨一下Fluent Api模式在实际项目中的使用流程. 1. Fluent API属于EF CodeFirst模式的一种,E ...

  2. CSS盒模型深入理解

    前言 所有文档元素都生成一个矩形框,这称为元素框(element box),它描述了一个元素在文档布局中所占的空间大小.而且,每个框影响着其他元素框的位置和大小 宽高 宽度width被定义为从左内边界 ...

  3. 使用/dev/poll的str_cli函数

    void str_cli(FILE *fp, int sockfd) { int stdineof; char buf[MAXLINE]; int n; int wfd; ]; struct dvpo ...

  4. Codeforces 1088F(贪心+倍增)

    题目链接 题意 构造一颗树使得满足计算方法的结果最小. 思路 考虑两棵树,一棵为题目中的询问构成的树$T1$,一棵为要构造的满足最终答案的树$T2$.从$T1$点权最小的点向外构造$T2$,在$T1$ ...

  5. Python3:判断三角形的类型

    # 判断三角形类型def triangle(a,b,c): if a>0 and b>0 and c>0: if a+b>c and b+c>a and a+c>b ...

  6. js倒计时一分钟

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  7. 手写代码 - java.util.Arrays 相关

    1-拷贝一个范围内的数组 Arrays.copyOfRange( array, startIndex, endIndex); include startIndex... exclude endInde ...

  8. CReLU激活函数

    转载自CSDN, CReLU激活函数 CReLU 一种改进 ReLU 激活函数的文章,来自ICML2016. 1. 背景介绍 整个文章的出发点来自于下图的统计现象:  为了看懂上图. (1)首先介绍 ...

  9. EF优化之启动预热

    为什么Entity Framework的初始化速度慢如蜗牛呢? 对于在应用程序中定义的每个DbContext类型,在首次使用时,Entity Framework都会根据数据库中的信息在内存生成一个映射 ...

  10. PGCD2 - Primes in GCD Table (Hard)

    这题肝了三四天,其他啥也没做... 传送门 然后...双倍经验 简单版 不知道为什么会脑抽去帮 LZ_101 大佬验题... 题目和被 A 穿的 PGCD 一样,数据范围变成大概 2e11 ... 于 ...