bzoj 4767 两双手 - 动态规划 - 容斥原理
题目传送门
题目大意
一个无限大的棋盘上有一只马,设马在某个时刻的位置为$(x, y)$, 每次移动可以将马移动到$(x + A_x, y + A_y)$或者$(x + B_x, y + B_y)$。棋盘上有$n$个禁止位置不能经过,问马从$(0, 0)$走到$(E_x, E_y)$的方案数。
容斥是显然的。
每确定经过$k$个禁止位置的方案数的容斥系数是$(-1)^{k}$。
考虑带上容斥系数来动态规划,
注意到去掉重复的禁止位置后,$(0, 0), (E_x, E_y)$以及禁止位置构成了一个DAG。
容斥相当于求从$(0, 0)$到$(E_x, E_y)$的经过偶数个禁止位置的路径数减去经过奇数个禁止位置的路径数。
直接动态规划计数就好了。
Code
/**
* bzoj
* Problem#4767
* Accepted
* Time: 333ms
* Memory: 10716k
*/
#include <iostream>
#include <cassert>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <set>
using namespace std;
typedef bool boolean; const int N = , M = 1e9 + , D = 1e6 + ; int add(int a, int b) {
return ((a += b) >= M) ? (a - M) : (a);
} int sub(int a, int b) {
return ((a -= b) < ) ? (a + M) : (a);
} int mul(int a, int b) {
return a * 1ll * b % M;
} #define pii pair<int, int>
#define fi first
#define sc second void exgcd(int a, int b, int& x, int& y) {
if (!b)
x = , y = ;
else {
exgcd(b, a % b, y, x);
y -= (a / b) * x;
}
} int inv(int a, int n) {
int x, y;
exgcd(a, n, x, y);
return (x < ) ? (x + n) : (x);
} int fac[D], _fac[D]; inline void prepare() {
fac[] = ;
for (int i = ; i < D; i++)
fac[i] = mul(fac[i - ], i);
_fac[D - ] = inv(fac[D - ], M);
for (int i = D; --i; )
_fac[i - ] = mul(_fac[i], i);
} int comb(int n, int m) {
if (n < m)
return ;
return mul(fac[n], mul(_fac[n - m], _fac[m]));
} boolean Solve(int a1, int b1, int a2, int b2, int c1, int c2, pii& sol) {
int d = c2 * a1 - a2 * c1, f = a1 * b2 - a2 * b1;
if (d % f)
return false;
sol.sc = d / f;
if (a1) {
d = c1 - b1 * sol.sc;
if (d % a1)
return false;
sol.fi = d / a1;
} else {
d = c2 - b2 * sol.sc;
if (d % a2)
return false;
sol.fi = d / a2;
}
return sol.fi >= && sol.sc >= ;
} int n, Ex, Ey;
int Ax, Ay, Bx, By;
pii ps[N];
int deg[N];
set<pii> s;
boolean g[N][N]; //#define _DEBUG_
#ifdef _DEBUG_
FILE* fin = fopen("6.in", "r");
#else
FILE* fin = stdin;
#endif boolean Solve(pii ps, pii pt, pii& sol) {
return Solve(Ax, Bx, Ay, By, pt.fi - ps.fi, pt.sc - ps.sc, sol);
} inline void init() {
fscanf(fin, "%d%d%d", &Ex, &Ey, &n);
fscanf(fin, "%d%d%d%d", &Ax, &Ay, &Bx, &By);
for (int i = ; i <= n; i++) {
fscanf(fin, "%d%d", &ps[i].fi, &ps[i].sc);
if (s.count(ps[i]))
i--, n--;
s.insert(ps[i]);
}
} int f[N];
queue<int> que;
inline void solve() {
int t = n + ;
pii p, S(, ), T(Ex, Ey);
ps[] = S, ps[t] = T;
for (int i = ; i <= n; i++)
if (Solve(S, ps[i], p))
g[][i] = true, deg[i]++;
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
if ((i ^ j) && Solve(ps[i], ps[j], p))
g[i][j] = true, deg[j]++, assert(!g[j][i]);
for (int i = ; i <= n; i++)
if (Solve(ps[i], T, p))
g[i][t] = true, deg[t]++;
if (Solve(S, T, p))
g[][t] = true, deg[t]++; f[] = ;
que.push();
while (!que.empty()) {
int e = que.front();
que.pop();
for (int i = ; i <= t; i++) {
if (!g[e][i])
continue;
Solve(ps[e], ps[i], p);
if (i && i != t)
f[i] = sub(f[i], mul(f[e], comb(p.fi + p.sc, p.fi)));
else
f[i] = add(f[i], mul(f[e], comb(p.fi + p.sc, p.fi)));
if (!(--deg[i]))
que.push(i);
}
}
// for (int i = 1; i <= n; i++)
// assert(!deg[i]);
// if (deg[i])
// cerr << i << " " << ps[i].fi << " " << ps[i].sc << endl;
printf("%d\n", f[t]);
} int main() {
prepare();
init();
solve();
return ;
}
bzoj 4767 两双手 - 动态规划 - 容斥原理的更多相关文章
- bzoj 4767: 两双手 组合 容斥
题目链接 bzoj4767: 两双手 题解 不共线向量构成一组基底 对于每个点\((X,Y)\)构成的向量拆分 也就是对于方程组 $Ax * x + Bx * y = X $ \(Ay * x + B ...
- BZOJ 4767: 两双手 [DP 组合数]
传送门 题意: 给你平面上两个向量,走到指定点,一些点不能经过,求方案数 煞笔提一开始被题面带偏了一直郁闷为什么方案不是无限 现在精简的题意.....不就是$bzoj3782$原题嘛,还不需要$Luc ...
- BZOJ.4767.两双手(组合 容斥 DP)
题目链接 \(Description\) 棋盘上\((0,0)\)处有一个棋子.棋子只有两种走法,分别对应向量\((A_x,A_y),(B_x,B_y)\).同时棋盘上有\(n\)个障碍点\((x_i ...
- BZOJ 4767 两双手
题解: 发现这种题目虽然可以想出来,但磕磕碰碰得想挺久的 根据数学可以知道组成方案是唯一的(集合) 然后发现每个使用的大小可能是接近n^2的 直接dp(n^4)是过不了的 那么先观察观察 我们可以把每 ...
- 【BZOJ】4767: 两双手【组合数学】【容斥】【DP】
4767: 两双手 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1057 Solved: 318[Submit][Status][Discuss] ...
- bzoj4767两双手 容斥+组合
4767: 两双手 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 684 Solved: 208[Submit][Status][Discuss] ...
- 【BZOJ4767】两双手(动态规划,容斥)
[BZOJ4767]两双手(动态规划,容斥) 题面 BZOJ 题解 发现走法只有两种,并且两维坐标都要走到对应的位置去. 显然对于每个确定的点,最多只有一种固定的跳跃次数能够到达这个点. 首先对于每个 ...
- BZOJ4767: 两双手【组合数学+容斥原理】
Description 老W是个棋艺高超的棋手,他最喜欢的棋子是马,更具体地,他更加喜欢马所行走的方式.老W下棋时觉得无聊,便决定加强马所行走的方式,更具体地,他有两双手,其中一双手能让马从(u,v) ...
- Bzoj 1042: [HAOI2008]硬币购物 容斥原理,动态规划,背包dp
1042: [HAOI2008]硬币购物 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1747 Solved: 1015[Submit][Stat ...
随机推荐
- linux 软链接和硬链接的区别 和 inode 的理解
软连接和硬连接的区别:1.创建的方式不同软:ln -s 源文件 连接名硬:ln 源文件 连接名 2.原理不同,和删除源文件对其的影响.硬连接的inode节点和源文件的inode节点一样.也就是同一个i ...
- Js中Map对象的使用
Js中Map对象的使用 1.定义 键/值对的集合. 2.语法 mapObj = new Map() 3.备注 集合中的键和值可以是任何类型.如果使用现有密钥向集合添加值,则新值会替换旧值. 4.属性 ...
- Autofac之类型注册
本次主要学习一下Autofac中实现类型注册的几种方式,这里并不打算一开始就从基于接口开发的服务关联切入,而是先从一个简单的类型注册来学起,虽然实际开发中可能不会这么做,但是个人感觉从这里学起理解能能 ...
- 一种JNI混淆方案
转载自:http://www.liuling123.com/2016/06/so_method_mix.html 感谢原作者 侵删 默认情况下,使用JNI时与native对应的JNI函数名都是Java ...
- linux上磁盘的操作相关命令
1.查看磁盘IO负载 - 看哪些进程在读写磁盘 lsof /dev/sda2 |head
- 点击按钮如何改变当前窗口的url
<!doctype html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- oracle 表空间,用户的创建及授权,表空间基本操作
参考地址:https://www.cnblogs.com/zhaideyou/articles/5845271.html Oracle安装完后,其中有一个缺省的数据库,除了这个缺省的数据库外,我们还可 ...
- js 获取url具体参数
用JS获取地址栏参数的方法(超级简单) 方法一:采用正则表达式获取地址栏参数:( 强烈推荐,既实用又方便!) function GetQueryString(name) { var reg = new ...
- 多个页面引用公共的头部 header.html 和尾部 footer.html
方法:通过load()函数,引入公共头部和尾部文件; js代码预览: $(".headerPage").load("header.html"); $(" ...
- Leetcode Articles: Insert into a Cyclic Sorted List
Given a node from a cyclic linked list which has been sorted, write a function to insert a value int ...