[Luogu4705] 玩游戏
Description
给定两个长度分别为 \(n\) 和 \(m\) 的序列 \(a\) 和 \(b\)。要从这两个序列中分别随机一个数,设为 \(a_x,b_y\),定义该次游戏的 \(k\) 次收益为 \((a_x+b_y)^k\) 。对于 \(i=1,2,\dots,t\),求一次游戏 \(i\) 次收益的期望。\(n,m,t\leq 10^5\)。
Sol
根据期望的线性性,显然可以求每个点对的 \(i\) 次收益,最后再除以 \(nm\) 就好了。
所以问题转化为,对于每个 \(k\),求:
\]
接下来直接推导:
ans_k&=\sum_{i=1}^n\sum_{j=1}^m (a_i+b_j)^k\\
&=\sum_{i=1}^n\sum_{j=1}^m\sum_{p=0}^k \binom kpa_i^pb_j^{k-p}\\
&=\sum_{p=0}^k\binom kp \left(\sum_{i=1}^na_i^p\right) \left(\sum_{j=1}^mb_j^{k-p} \right)\\
&=k!\cdot\sum_{p=0}^k \left(\sum_{i=1} ^n \frac{a_i^p}{p!}\right) \left(\sum_{j=1}^m\frac{b_j^{k-p}}{(k-p)!} \right) \end{aligned}
\]
发现这是个卷积式子,现在问题变成了如何求:
\]
设 \(F(x)=\prod\limits_{i=1}^n(1+a_ix),G(x)=\ln(F(x))\)
那么:
G(x)&=\ln(\prod_{i=1}^n 1+a_ix)\\
&=\sum_{i=1}^n \ln(1+a_ix)
\end{aligned}
\]
把 \(\ln(1+a_ix)\) 泰勒展开:
G(x)&=\sum_{i=1}^n \ln(1+a_ix)\\
&= \sum_{i=1}^n \sum_{k=1}^\infty \frac{(-1)^{k+1}}{k}\cdot a_i^k\cdot x^k\\
&= \sum_{k=1}^\infty \frac{(-1)^{k+1}}k\cdot x^k\cdot \left( \sum_{i=1}^n a_i^k \right)
\end{aligned}
\]
后边那项就是我们要求的。
总结一下,先分治\(\text{NTT}\)求出\(F(x)\),再取对数求出\(G(x)\),然后第 \(k\) 项乘上一个系数就是 \(\sum\limits_{i=1}^n a_i^k\) 了。
Code
#pragma GCC optimize(2)
#include<bits/stdc++.h>
using namespace std;
typedef double db;
typedef long long ll;
typedef vector<int> vec;
const int N=262144+5;
const int mod=998244353;
#define pb push_back
int w[2][N],in[N];
int fac[N],ifac[N],A[N],B[N];
int n,m,t,a[N],b[N],c[N],d[N];
int lim,maxn,rev[N],tmpa[N],tmpb[N];
int ksm(int a,int b=mod-2,int ans=1){
while(b){
if(b&1) ans=1ll*ans*a%mod;
a=1ll*a*a%mod;b>>=1;
} return ans;
}
void ntt(int *f,int g){
for(int i=1;i<lim;i++) if(i<rev[i]) swap(f[i],f[rev[i]]);
for(int mid=1;mid<lim;mid<<=1){
for(int R=mid<<1,j=0;j<lim;j+=R){
for(int k=0;k<mid;k++){
int x=f[j+k],y=1ll*w[g][maxn/R*k]*f[j+k+mid]%mod;
f[j+k]=x+y>=mod?x+y-mod:x+y,f[j+k+mid]=x-y<0?x-y+mod:x-y;
}
}
} if(g)
for(int i=0;i<lim;i++) f[i]=1ll*f[i]*in[lim]%mod;
}
vec calc(int *a,int l,int r){
if(l==r){vec now;now.pb(1);now.pb(a[l]);return now;}
int mid=l+r>>1;
vec L=calc(a,l,mid),R=calc(a,mid+1,r);
lim=1;while(lim<=r-l+1) lim<<=1;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
for(int i=0;i<(int)L.size();i++) A[i]=L[i];
for(int i=0;i<(int)R.size();i++) B[i]=R[i];
ntt(A,0),ntt(B,0);
for(int i=0;i<lim;i++) A[i]=1ll*A[i]*B[i]%mod;
ntt(A,1); vec now;
for(int i=0;i<=r-l+1;i++) now.pb(A[i]),A[i]=B[i]=0;
for(int i=r-l+2;i<lim;i++) A[i]=B[i]=0;
return now;
}
void solveinv(int *a,int *b,int len){
if(len==1) return b[0]=ksm(a[0]),void();
solveinv(a,b,len>>1); lim=len<<1;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
for(int i=len;i<lim;i++) A[i]=0;
for(int i=0;i<len;i++) A[i]=a[i];
ntt(A,0),ntt(b,0);
for(int i=0;i<lim;i++)
b[i]=1ll*b[i]*(2ll-1ll*A[i]*b[i]%mod+mod)%mod;
ntt(b,1); for(int i=len;i<lim;i++) b[i]=0;
}
void ds(int *a,int *b,int n){
for(int i=0;i<n;i++)
b[i]=1ll*a[i+1]*(i+1)%mod;
b[n]=0;
}
void jf(int *a,int n){
for(int i=n;i;i--)
a[i]=1ll*a[i-1]*in[i]%mod;
a[0]=0;
}
void solveln(int *a,int *b,int n){
memset(tmpa,0,sizeof tmpa);
memset(tmpb,0,sizeof tmpb);
lim=1;while(lim<n) lim<<=1;
solveinv(a,tmpa,lim);
lim=1;while(lim<n<<1) lim<<=1;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
ds(a,tmpb,n);
ntt(tmpa,0),ntt(tmpb,0);
for(int i=0;i<lim;i++) b[i]=1ll*tmpa[i]*tmpb[i]%mod;
ntt(b,1); jf(b,n);
}
void init(int n){
fac[0]=ifac[0]=1;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%mod;
ifac[n]=ksm(fac[n]);
for(int i=n-1;i;i--) ifac[i]=1ll*ifac[i+1]*(i+1)%mod;
}
signed main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=m;i++) scanf("%d",&b[i]);
scanf("%d",&t);
init(t);
maxn=1;while(maxn<=max(t<<1,n+m-2)) maxn<<=1;
w[0][0]=w[1][0]=1; in[1]=1;
w[0][1]=ksm(3,(mod-1)/maxn),w[1][1]=ksm((mod+1)/3,(mod-1)/maxn);
for(int i=2;i<=maxn;i++)
in[i]=ksm(i),
w[0][i]=1ll*w[0][i-1]*w[0][1]%mod,
w[1][i]=1ll*w[1][i-1]*w[1][1]%mod;
vec aa=calc(a,1,n),bb=calc(b,1,m);
for(int i=0;i<=n;i++) c[i]=aa[i];
for(int i=0;i<=m;i++) d[i]=bb[i];
memset(a,0,sizeof a),memset(b,0,sizeof b);
solveln(c,a,t); a[0]=n; // 注意这里的0次项 积分给消掉了 所以要特殊赋值
solveln(d,b,t); b[0]=m;
for(int i=1;i<=t;i++){
a[i]=1ll*a[i]*i%mod;
b[i]=1ll*b[i]*i%mod;
if(!(i&1)) a[i]=mod-a[i],b[i]=mod-b[i];
a[i]=1ll*a[i]*ifac[i]%mod;
b[i]=1ll*b[i]*ifac[i]%mod;
}
for(int i=t+1;i<lim;i++) a[i]=b[i]=0;
lim=maxn;
for(int i=1;i<lim;i++) rev[i]=(rev[i>>1]>>1)|(i&1?lim>>1:0);
ntt(a,0),ntt(b,0);
for(int i=0;i<lim;i++) a[i]=1ll*a[i]*b[i]%mod;
ntt(a,1);
for(int inn=ksm(1ll*n*m%mod),i=1;i<=t;i++)
printf("%lld\n",1ll*a[i]*fac[i]%mod*inn%mod);
return 0;
}
[Luogu4705] 玩游戏的更多相关文章
- luogu4705玩游戏
题解 我们要对于每个t,求一个(1/mn)sigma(ax+by)^t. 把系数不用管,把其他部分二项式展开一下: simga(ax^r*by^(t-r)*C(t,r)). 把组合数拆开,就变成了一个 ...
- Luogu4705 玩游戏 分治FFT
传送门 \(\begin{align*} Ans_k &= \sum\limits_{i=1}^n\sum\limits_{j=1}^m (a_i + b_j)^k \\ &= \su ...
- 原生JS实战:写了个一边玩游戏,一边记JS的API的游戏
本文是苏福的原创文章,转载请注明出处:苏福CNblog:http://www.cnblogs.com/susufufu/p/5878913.html 本程序[一边玩游戏,一边记JS的API]是本人的个 ...
- bzoj4730: Alice和Bob又在玩游戏
Description Alice和Bob在玩游戏.有n个节点,m条边(0<=m<=n-1),构成若干棵有根树,每棵树的根节点是该连通块内编号最 小的点.Alice和Bob轮流操作,每回合 ...
- 小易邀请你玩一个数字游戏,小易给你一系列的整数。你们俩使用这些整数玩游戏。每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字。 例如: 如果{2,1,2,7}是你有的一系列数,小易说的数字是11.你可以得到方案2+2+7 = 11.如果顽皮的小易想坑你,他说的数字是6,那么你没有办法拼凑出和为6 现在小易给你n个数,让你找出无法从n个数中选取部分求和
小易邀请你玩一个数字游戏,小易给你一系列的整数.你们俩使用这些整数玩游戏.每次小易会任意说一个数字出来,然后你需要从这一系列数字中选取一部分出来让它们的和等于小易所说的数字. 例如: 如果{2,1,2 ...
- cdoj 1136 邱老师玩游戏 树形背包
邱老师玩游戏 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.uestc.edu.cn/#/problem/show/1136 Desc ...
- win7系统玩游戏不能全屏的解决办法
1.修改注册表中的显示器的参数设置 Win键+R键,打开运行窗口,输入regedit回车,这样就打开了注册表编辑器,然后,定位到以下位置: HKEY_LOCAL_MACHINE\SYSTEM\ ...
- 【用PS3手柄在安卓设备上玩游戏系列】连接手柄和设备
背景 硬件要求1:PS3 手柄 + 手柄配套的USB线 硬件要求2:已经获得 ROOT 权限并且支持蓝牙的安卓设备 软件要求1:Sixaxis Compatibility Checker PS3 手柄 ...
- UESTC_邱老师玩游戏 2015 UESTC Training for Dynamic Programming<Problem G>
G - 邱老师玩游戏 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Submi ...
随机推荐
- ProgressBar三种style
一.普通的ProgressBar显示如图 <ProgressBar android:id="@+id/pbNormal" android:layo ...
- 马昕璐201771010118 《面对对象程序设计(java)》第九周学习总结
第一部分:理论知识学习部分 异常:在程序的执行过程中所发生的异常事件,它中断指令的正常执行. Java把程序运行时可能遇到的错误分为两类: 非致命异常:通过某种修正后程序还能继续执行. 致命异常:程序 ...
- vue 验证电话
<el-form :model="orderaddForm" :rules="rulesPhone" ref="orderaddForm&quo ...
- ndk编译ffmpeg
#!/bin/bash NDK=/opt/android-ndk-r9d SYSROOT=$NDK/platforms/android-9/arch-arm/ TOOLCHAIN=$NDK/toolc ...
- 清除SqlServer日志
--在SQL2008中清除日志就必须在简单模式下进行,等清除动作完毕再调回到完全模式. USE [master]GO --GPSLocus是要清除日志的数据库名称ALTER DATABASE [DbN ...
- Spring IOC容器基本原理
2.2.1 IOC容器的概念IOC容器就是具有依赖注入功能的容器,IOC容器负责实例化.定位.配置应用程序中的对象及建立这些对象间的依赖.应用程序无需直接在代码中new相关的对象,应用程序由IOC容器 ...
- Java面试大纲-java面试该做哪些准备,java开发达到这样的水平可以涨工资
Java培训结束,面临的就是毕业找工作.在找工作时,就要针对性地做充分的面试准备.准备不充分的面试,完全是浪费时间,更是对自己的不负责. 上海尚学堂Java培训整理出Java面试大纲,其中大部分都是面 ...
- 模仿bootstrap做的 js tooltip (添加鼠标跟随功能)
主要思路: 使用jquery hover方法,当进入时显示tooltip,移出时隐藏tooltip当设定为鼠标跟随时,使用mousemove事件显示tooltip根据tooltip显示位置设置,计算t ...
- Linux中搭建Maven私服
linux安装maven 先解压maven的压缩包apache-maven-3.5.4-bin.tar.gz 命令: tar -zavf pache-maven-3.5.4-bin.tar.gz ...
- [Swift]LeetCode33. 搜索旋转排序数组 | Search in Rotated Sorted Array
Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. (i.e. ...