Internal Covariate Shift:每一次参数迭代更新后,上一层网络的输出数据经过这一层网络计算后,数据的分布会发生变化,为下一层网络的学习带来困难(神经网络本来就是要学习数据的分布,要是分布一直在变,学习就很难了)

Covariate Shift:由于训练数据和测试数据存在分布的差异性,给网络的泛化性和训练速度带来了影响。

归一化的效果图:

BatchnormBatchnorm是归一化的一种手段,极限来说,这种方式会减小图像之间的绝对差异,突出相对差异,加快训练速度。

若将每一层输出后的数据都归一化到0均值,1方差,满足正太分布,其完全学习不到输入数据的特征,因为,费劲心思学习到的特征分布被归一化了。

加入可训练的参数做归一化,那就是BatchNormBatchNorm实现的了。

β 和γ分别称之为平移参数和缩放参数 。这样就保证了每一次数据经过归一化后还保留的有学习来的特征,同时又能完成归一化这个操作,加速训练。

def Batchnorm_simple_for_train(x, gamma, beta, bn_param):
"""
param:x : 输入数据,设shape(B,L)
param:gama : 缩放因子 γ
param:beta : 平移因子 β
param:bn_param : batchnorm所需要的一些参数
eps : 接近0的数,防止分母出现0
momentum : 动量参数,一般为0.9, 0.99, 0.999
running_mean :滑动平均的方式计算新的均值,训练时计算,为测试数据做准备
running_var : 滑动平均的方式计算新的方差,训练时计算,为测试数据做准备
"""
running_mean = bn_param['running_mean'] #shape = [B]
running_var = bn_param['running_var'] #shape = [B]
results = 0. # 建立一个新的变量 x_mean=x.mean(axis=0) # 计算x的均值
x_var=x.var(axis=0) # 计算方差
x_normalized=(x-x_mean)/np.sqrt(x_var+eps) # 归一化
results = gamma * x_normalized + beta # 缩放平移 running_mean = momentum * running_mean + (1 - momentum) * x_mean
running_var = momentum * running_var + (1 - momentum) * x_var #记录新的值
bn_param['running_mean'] = running_mean
bn_param['running_var'] = running_var return results , bn_param

batchnorm mean var 是根据样本计算出来的,而不是反向传播计算而来的

在训练过程中,mean var参数的更新由原来的running_mean*0.9加上新计算的x_mean*0.1

batchnorm的优点:

1.较大的学习率极大的提高了学习速度。

2.batchnorm本身也是一种正则方式,可以代替其他的正则化方法,如dropout。

3.batchnorm降低了数据之间的绝对差异,更多的考虑相对差异,在分类任务上有更好的效果。

Batchnorm的更多相关文章

  1. caffe中的BatchNorm层

    在训练一个小的分类网络时,发现加上BatchNorm层之后的检索效果相对于之前,效果会有提升,因此将该网络结构记录在这里,供以后查阅使用: 添加该层之前: layer { name: "co ...

  2. (原)torch和caffe中的BatchNorm层

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6015990.html BatchNorm具体网上搜索. caffe中batchNorm层是通过Batc ...

  3. 从 python 中 axis 参数直觉解释 到 CNN 中 BatchNorm 的工作方式(Keras代码示意)

    1. python 中 axis 参数直觉解释 网络上的解释很多,有的还带图带箭头.但在高维下是画不出什么箭头的.这里阐述了 axis 参数最简洁的解释. 假设我们有矩阵a, 它的shape是(4, ...

  4. tensorflow,object,detection,在model zoom,新下载的模型,WARNING:root:Variable [resnet_v1_50/block1/unit_3/bottleneck_v1/conv3/BatchNorm/gamma] is not available in checkpoint

    现象: WARNING:root:Variable [resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/BatchNorm/beta] is not ava ...

  5. 深度学习中 batchnorm 层是咋回事?

    作者:Double_V_ 来源:CSDN 原文:https://blog.csdn.net/qq_25737169/article/details/79048516 版权声明:本文为博主原创文章,转载 ...

  6. caffe中关于(ReLU层,Dropout层,BatchNorm层,Scale层)输入输出层一致的问题

    在卷积神经网络中.常见到的激活函数有Relu层 layer { name: "relu1" type: "ReLU" bottom: "pool1&q ...

  7. 基础 | batchnorm原理及代码详解

    https://blog.csdn.net/qq_25737169/article/details/79048516 https://www.cnblogs.com/bonelee/p/8528722 ...

  8. BatchNorm caffe源码

    1.计算的均值和方差是channel的 2.test/predict 或者use_global_stats的时候,直接使用moving average use_global_stats 表示是否使用全 ...

  9. 太深了,梯度传不下去,于是有了highway。 干脆连highway的参数都不要,直接变残差,于是有了ResNet。 强行稳定参数的均值和方差,于是有了BatchNorm。RNN梯度不稳定,于是加几个通路和门控,于是有了LSTM。 LSTM简化一下,有了GRU。

    请简述神经网络的发展史sigmoid会饱和,造成梯度消失.于是有了ReLU.ReLU负半轴是死区,造成梯度变0.于是有了LeakyReLU,PReLU.强调梯度和权值分布的稳定性,由此有了ELU,以及 ...

随机推荐

  1. 一起ORA-00028案例的处理过程

    前言 最近客户在测试新系统A时,遭遇ORA28,回话被终止的问题. 先了解一下大致环境,系统A由系统B通过rman还原恢复,应用程序已经在系统B跑批通过,现在系统A上遇到下面问题. 应用程序报错如下 ...

  2. notify.min.js

    /*! * @wcjiang/notify v2.0.11 * JS achieve the browser title flashing , scrolling, voice prompts , c ...

  3. flask下载文件---文件流

    html: <a name="downloadbtn" class="btn btn-success pull-right" href="/do ...

  4. memcached----------linux下安装memcached,以及php的memcached扩展。

    1.通过wget http://www.memcached.org/files/memcached-1.4.24.tar.gz下载最新源码2.解压tar -xf memcached-1.4.24.ta ...

  5. 理解JS深拷贝

    前言: JS的拷贝(copy),之所以分为深浅两种形式,是因为JS变量的类型存在premitive(字面量)与reference(引用)两种区别.当然,大多数编程语言都存在这种特性. 众所周知,内存包 ...

  6. Redis哨兵模式(sentinel)部署记录(主从复制、读写分离、主从切换)

    部署环境: CentOS7.5  192.168.94.11 (master) 192.168.94.22 (slave0) 192.168.94.33 (slave1) 192.168.94.44 ...

  7. matlab的Deep Learning的toolbox 中的SAE算法

    最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的 ...

  8. shell的输入参数

    $#  参数格式 $0 $1 $2 ...第一个,第二个参数...

  9. JavaScript数组对象常用方法

    JavaScript数组对象常用方法 方法 形式 返回值 是否改变原数组 描述 concat -items: ConcatArray[] 追加之后的数组 否 连接两个或更多的数组,并返回结果.注意 c ...

  10. Vue 组件&组件之间的通信 之 使用slot分发内容

    slot详细介绍网址:https://cn.vuejs.org/v2/api/#slot 有时候我们需要在自定义组件内书写一些内容,例如: <com-a> <h1>title& ...