Linear Regression with machine learning methods
Ha, it's English time, let's spend a few minutes to learn a simple machine learning example in a simple passage.
Introduction
- What is machine learning? you design methods for machine to learn itself and improve itself.
- By leading into the machine learning methods, this passage introduced three methods to get optimal k and b of linear regression(y = k*x + b).
- The data used is produced by ourselves.
- Self-sufficient data generation
- Random Chosen Method
- Supervised Direction Method
- Gradient Descent Method
- Conclusion
Self-sufficientDataGeneration
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import random
#produce data
age_with_fares = pd.DataFrame({"Fare":[263.0, 247.5208, 146.5208, 153.4625, 135.6333, 247.5208, 164.8667, 134.5, 135.6333, 153.4625, 134.5, 263.0, 211.5, 263.0, 151.55, 153.4625, 227.525, 211.3375, 211.3375],
"Age":[23.0, 24.0, 58.0, 58.0, 35.0, 50.0, 31.0, 40.0, 36.0, 38.0, 41.0, 24.0, 27.0, 64.0, 25.0, 40.0, 38.0, 29.0, 43.0]})
sub_fare = age_with_fares['Fare']
sub_age = age_with_fares['Age']
#show our data
plt.scatter(sub_age,sub_fare)
plt.show()
def func(age, k, b): return k*age+b
def loss(y,yhat): return np.mean(np.abs(y-yhat))
#here we choose only minus methods as the loss, besides, there are mean-square-error(L2) loss and other loss methods
RandomChosenMethod
min_error_rate = float('inf')
loop_times = 10000
losses = []
def step(): return random.random() * 2 - 1
# random生成 0~1的随机数;(0,1)*2 -> (0,2); 再减1 -> (-1,1), 随机生成+循环:学习动力来源
while loop_times > 0:
k_hat = random.random() * 20 - 10
b_hat = random.random() * 20 - 10
estimated_fares = func(sub_age, k_hat, b_hat)
error_rate = loss(y=sub_fare, yhat=estimated_fares)
if error_rate<min_error_rate:# 自我监督机制体现在此
min_error_rate = error_rate
losses.append(error_rate)
best_k = k_hat
best_b = b_hat
loop_times -= 1
plt.scatter(sub_age, sub_fare)
plt.plot(sub_age, func(sub_age, best_k, best_b), c = 'r')
plt.show()
show the loss change
plt.plot(range(len(losses)), losses)
plt.show()
Explain
- We can see the loss decrease sometimes quickly, sometimes slowly, anyway, it decreases finally.
- One shortcoming of this method: the Random Chosen methods is not so valid as it runs random function tons of time.
- Because even when it comes out a better parameter, it may choose a worse one next time.
- One improved method see next part.
SupervisedDirectionMethod
change_directions = [
(+1, -1),# k increase, b decrease
(+1, +1),
(-1, -1),
(-1, +1)
]
min_error_rate = float('inf')
loop_times = 10000
losses = []
best_direction = random.choice(change_directions)
#定义每次变化(步长)的大小
def step(): return random.random()*2-1
#random生成 0~1的随机数;(0,1)*2 -> (0,2); 再减1 -> (-1,1);
#但是change_directions已经有加减1(改变方向)的操作,所以去掉 *2-1
#但保留*2-1 能增加choise
k_hat = random.random() * 20 - 10
b_hat = random.random() * 20 - 10
best_k, best_b = k_hat, b_hat
while loop_times > 0:
k_delta_direction, b_delta_direction = best_direction or random.choice(change_directions)
k_delta = k_delta_direction * step()
b_delta = b_delta_direction * step()
new_k = best_k + k_delta
new_b = best_b + b_delta
estimated_fares = func(sub_age, new_k, new_b)
error_rate = loss(y=sub_fare, yhat=estimated_fares)
#print(error_rate)
if error_rate < min_error_rate:#supervisor learning
min_error_rate = error_rate
best_k, best_b = new_k, new_b
best_direction = (k_delta_direction, b_delta_direction)
#print(min_error_rate)
#print("loop == {}".format(loop_times))
losses.append(min_error_rate)
#print("f(age) = {} * age + {}, with error rate: {}".format(best_k, best_b, error_rate))
else:
best_irection = random.choice(list(set(change_directions)-{(k_delta_direction, b_delta_direction)}))
#新方向不能等于老方向
loop_times -= 1
print("f(age) = {} * age + {}, with error rate: {}".format(best_k, best_b, error_rate))
plt.scatter(sub_age, sub_fare)
plt.plot(sub_age, func(sub_age, best_k, best_b), c = 'r')
plt.show()
show the loss change
plt.plot(range(len(losses)), losses)
plt.show()
Explain
- The Supervised Direction method(2nd method) is better than Random Chosen method(1st method).
- The 2nd method introduced supervise mechanism, which is more efficiently in changing parameters k and b.
- But the 2nd method can't optimize the parameters to smaller magnitude.
- Besides, the 2nd method can't find the extreme value, thus can't find the optimal parameters effectively.
GradientDescentMethod
min_error_rate = float('inf')
loop_times = 10000
losses = []
learing_rate = 1e-1
change_directions = [
# (k, b)
(+1, -1), # k increase, b decrease
(+1, +1),
(-1, +1),
(-1, -1) # k decrease, b decrease
]
k_hat = random.random() * 20 - 10
b_hat = random.random() * 20 - 10
best_direction = None
def step(): return random.random() * 1
direction = random.choice(change_directions)
def derivate_k(y, yhat, x):
abs_values = [1 if (y_i - yhat_i) > 0 else -1 for y_i, yhat_i in zip(y, yhat)]
return np.mean([a * -x_i for a, x_i in zip(abs_values, x)])
def derivate_b(y, yhat):
abs_values = [1 if (y_i - yhat_i) > 0 else -1 for y_i, yhat_i in zip(y, yhat)]
return np.mean([a * -1 for a in abs_values])
while loop_times > 0:
k_delta = -1 * learing_rate * derivate_k(sub_fare, func(sub_age, k_hat, b_hat), sub_age)
b_delta = -1 * learing_rate * derivate_b(sub_fare, func(sub_age, k_hat, b_hat))
k_hat += k_delta
b_hat += b_delta
estimated_fares = func(sub_age, k_hat, b_hat)
error_rate = loss(y=sub_fare, yhat=estimated_fares)
#print('loop == {}'.format(loop_times))
#print('f(age) = {} * age {}, with error rate: {}'.format(k_hat, b_hat, error_rate))
losses.append(error_rate)
loop_times -= 1
print('f(age) = {} * age {}, with error rate: {}'.format(k_hat, b_hat, error_rate))
plt.scatter(sub_age, sub_fare)
plt.plot(sub_age, func(sub_age, k_hat, b_hat), c = 'r')
plt.show()
show the loss change
plt.plot(range(len(losses)), losses)
plt.show()
Explain
- To fit the objective function given discrete data, we use the loss function to determine how good the fit is.
- In order to get the minimum loss, it becomes a problem of finding the extremum without constraints.
- Therefore, the method of gradient reduction of the objective function is conceived.
- The gradient is the maximum value in the directional derivative.
- When the gradient approaches 0, we fit the better objective function.
Conclusion
- Machine learning is a process to make the machine learning and improving by methods designed by us.
- Random function usually not so efficient, but when we add supervise mechanism, it becomes efficient.
- Gradient Descent is efficiently to find extreme value and optimal.
Serious question for this article:
Why do you use machine learning methods instead of creating a y = k*x + b
formula?
- In some senarios, complicated formula can't meet the reality needs, like irrational elements in economics models.
- When we have enough valid data, we can run regression or classification model by machine learning methods
- We can also evaluate our machine learning model by test data which contributes to the application of the model in our real life
- This is just an example, Okay.
Reference for this article: Jupyter Notebook
Linear Regression with machine learning methods的更多相关文章
- Machine Learning Methods: Decision trees and forests
Machine Learning Methods: Decision trees and forests This post contains our crib notes on the basics ...
- How to use data analysis for machine learning (example, part 1)
In my last article, I stated that for practitioners (as opposed to theorists), the real prerequisite ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)
##机器学习(Machine Learning)&深度学习(Deep Learning)资料(Chapter 2)---#####注:机器学习资料[篇目一](https://github.co ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- booklist for machine learning
Recommended Books Here is a list of books which I have read and feel it is worth recommending to fri ...
- Machine Learning and Data Mining(机器学习与数据挖掘)
Problems[show] Classification Clustering Regression Anomaly detection Association rules Reinforcemen ...
- Why The Golden Age Of Machine Learning is Just Beginning
Why The Golden Age Of Machine Learning is Just Beginning Even though the buzz around neural networks ...
- Introduction to Machine Learning
Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an al ...
- Machine learning | 机器学习中的范数正则化
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏 ...
随机推荐
- 全排列 permutation
给定一个数字列表,返回其所有可能的排列 lintcode package www.dxb.com; import java.util.List;import java.util.ArrayList; ...
- SpringMVC Web项目升级为Springboot项目(二)
一.访问原项目地址,报404错误 由于原项目地址启动路径为http://localhost:8080/xxx Spring boot默认启动路径为http://localhost:8080/ 所以需要 ...
- vue中loding
<template> <div class="mf-loading-container" v-show="ifShow"> <im ...
- 使用paginate分页后数据处理
public function index(){ $sql = ""; $list = ""; $pagenumber = 20;//默认分页条数 //查询数据 ...
- python 使用 PIL 和 matplotlib 获取图片像素点处理之后再写入
python 版本 3.x 首先安装 PIL 由于PIL仅支持到Python 2.7,加上年久失修,于是一群志愿者在PIL的基础上创建了兼容的版本,名字叫Pillow,支持最新Python 3.x,又 ...
- python 计算器
import redef main(): #""代表的是空,split()方法已空格或者\t,\n进行切割,join方法是列表,元组,字典变为字符串 a = "" ...
- Windows Java安装
jdk安装与配置jdk for windows1.下载官网地址:http://www.oracle.com/technetwork/java/javase/downloads/index.html2. ...
- HDU 1556 BIT区间修改+单点查询(fread读入优化)
BIT区间修改+单点查询 [题目链接]BIT区间修改+单点查询 &题解: BIT区间修改+单点查询和求和的bit是一模一样的(包括add,sum) 只不过是你使用函数的方式不一样: 使用区间的 ...
- 18.12.09-C语言练习:兔子繁衍问题 / Fibonacci 数列
题目: 问题解析: 这是典型的/Fibonacci 数列问题.具体这里不赘述. 问题中不论是初始的第1对兔子还是以后出生的小兔子都是从第3个月龄起每个月各生一对兔子. 设n1,n2,n3分别是每个月1 ...
- JAVA 11初体验
JAVA 11初体验 随着JAVA没半年发布一次新版本,前几天JAVA 11隆重登场.在JAVA 11中,增加了一些新的特性和api, 同时也删除了一些特性和api,还有一些性能和垃圾回收的改进. 作 ...