一、TensorFlow的简介和安装和一些基本概念
1、Tensorflow的简介
就是一个科学计算的库,用于数据流图(张量流,可以理解成一个N维得数组)。
Tensorflow支持CPU和GPU,内部实现了对于各种目标函数求导的方式。
2、Tensorflow的安装(python3.5以上)
# pip install tensorflow==1.4.0 安装cpu版本
# pip install tensorflow-gpu 安装gpu版本
# pip3.6 install tensorflow -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com 使用阿里云镜像安装
3、基本概念
图(graph):描述计算过程
张量(tensor):数据,每个tensor是一个类型化的多维数组
操作(op):一个op获得多个tensor,输入/输出
会话(session):图的op的操作执行,定义什么时候运行
变量(variable):过程被改变,用于维护状态
4、边
实线,表述数据依赖,从前到后,叫前向传播,x-->y,而残差从后向前流动一遍,就是反向传播
虚线,表示控制依赖,用于控制操作的运行。
5、数据属性
tf.float32/64 32/64位浮点型
tf.int64/32/16/8 有符号整型
tf.uint8 无符号整型
tf.string 字节数组
tf.bool 布尔型
tf.complex64 由32位浮点组成的复数
tf.qint8/32 用于量化操作的8/32位有符号整型
tf.qunit8 用于量化操作的8位无符号整型
6、节点,节点又称算子,它代表一个操作
数学运算:Add、Subtract、Multiply、Div、Exp、Log....
数组运算:Concat、Slice、Split、Constant、Rank、Shape....
矩阵运算:MatMul、Matrixlnverse....
有状态的操作:Variable、Assign....
神经网络构建:SoftMax、Sigmoid、ReLU...
检查点:Save、Restore....
队列和同步操作:Enqueue、Dequeue、MutexAcquire
控制张量流的操作:Merge、Switch、Enter、Leave....
7、程序结构
构建阶段和执行阶段
8、创建一个简单的图(全部是常量的)
# -- encoding:utf-8 -- import tensorflow as tf # 定义常量矩阵a(dype类型为常量,shape可构建矩阵类型)
a = tf.constant([[1,2],[3,4]],dtype=tf.int32)
b = tf.constant([5,6,7,8],dtype=tf.int32,shape=[2,2])
# 以a,b作为输入,进行矩阵的乘法操作matmul
c = tf.matmul(a,b)
g = tf.add(a,c) #op之间如果没有依赖关系,会并行处理
#调用session的run方法来执行矩阵 #log_device_placement是否打日志,默认不打日志
#allow_soft_placement是否动态使用CPU和GPU,默认为False
with tf.Session(config=tf.ConfigProto(log_device_placement=True,allow_soft_placement=True)) as sess1:
result = sess1.run(g)
# 结果是多个值,返回一个列表
# result = sess.run(fetches=[c,g])
print('type:{},value:{}'.format(type(result), result))
9、创建一个有变量的图
# -- encoding:utf-8 -- import tensorflow as tf
#定义一个变量w1
w1 = tf.Variable(initial_value=3.0,dtype=tf.float32,name='w1')
#定义一个常量
a =tf.constant(value=2.0,dtype=tf.float32,name='w1')
#定义一个变量w2
w2 = tf.Variable(w1.initialized_value() * a,name='w2') c = tf.add(w1,w2)
#进行全局变量初始化
init_op = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
sess.run(init_op)
result = sess.run(c)
print("result:{}".format(result))
10、feed填充机制,在构建图使用placeholder类型的API临时替代任意操作的张量(占位符)
# -- encoding:utf-8 -- import tensorflow as tf #构建一个矩阵的乘法,但是矩阵在运行的时候给定 #dtype、shape、name
m1 = tf.placeholder(dtype=tf.float32,shape=[2,3],name='placeholder_m1')
m2 = tf.placeholder(dtype=tf.float32,shape=[3,2],name='placeholder_m2')
m3 = tf.matmul(m1,m2) init_op = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
sess.run(init_op)
result = sess.run(fetches=[m3],feed_dict={m1: [[1,2,3],[4,5,6]],m2: [[1,2],[3,4],[5,6]]})
print('result:{}'.format(result))
11、变量进行更新操作,迭代操作
import tensorflow as tf a = tf.Variable(initial_value=0,dtype=tf.int32,name='v_x')
#变量a的更新
assign_op = tf.assign(ref = a,value = a+1) init_op = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
sess.run(init_op)
for i in range(5):
r_x = sess.run(a)
sess.run(assign_op)
print(r_x)
一、TensorFlow的简介和安装和一些基本概念的更多相关文章
- 人工智能 tensorflow框架-->简介及安装01
简介:Tensorflow是google于2015年11月开源的第二代机器学习框架. Tensorflow名字理解:图形边中流动的数据叫张量(Tensor),因此叫Tensorflow 既 张量流动 ...
- 第四百一十六节,Tensorflow简介与安装
第四百一十六节,Tensorflow简介与安装 TensorFlow是什么 Tensorflow是一个Google开发的第二代机器学习系统,克服了第一代系统DistBelief仅能开发神经网络算法.难 ...
- TensorFlow Serving简介
一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Ser ...
- Node.js 教程 01 - 简介、安装及配置
系列目录: Node.js 教程 01 - 简介.安装及配置 Node.js 教程 02 - 经典的Hello World Node.js 教程 03 - 创建HTTP服务器 Node.js 教程 0 ...
- Java Gradle入门指南之简介、安装与任务管理
这是一篇Java Gradle入门级的随笔,主要介绍Gradle的安装与基本语法,这些内容是理解和创建build.gradle的基础,关于Gradle各种插件的使用将会在其他随笔中介绍. ...
- 细细品味Storm_Storm简介及安装
Storm是由专业数据分析公司BackType开发的一个分布式实时数据处理软件,可以简单.高效.可靠地处理大量的数据流.Twitter在2011年7月收购该公司,并于2011年9月底正式将Storm项 ...
- VMware vSphere 5.1 简介与安装
虚拟化系列-VMware vSphere 5.1 简介与安装 标签: 虚拟化 esxi5.1 VMware vSphere 5.1 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 . ...
- Nutch搜索引擎(第2期)_ Solr简介及安装
1.Solr简介 Solr是一个高性能,采用Java5开发,基于Lucene的全文搜索服务器.同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展并对查询性能进行了优化 ...
- Node.js的简介和安装
一.Node.js的简介和安装 a) 什么是Node.js? Node.js是一个开发平台 让JavaScript运行在服务器端的开发平台 ---简单点说就是用JavaScript写服务器 ...
随机推荐
- Python 基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控
基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控 By: 授客 QQ:1033553122 1.测试环境 python 3.4 zookeeper- ...
- ButterKnife的使用详解
ButterKnife的使用详解 1,概述: ButterKnife则是注解中相对简单易懂的很不错的开源框架. ButterKnife是目前常用的一种依托Java注解机制实现辅助代码生成的框架:用到了 ...
- HandlerThread原理分析
HandlerThread是一个内部拥有Handler和Looper的特殊Thread,可以方便地在子线程中处理消息. 简单使用 HandlerThread的使用比较简单. mHandlerThrea ...
- 虹软免费人脸识别SDK注册指南
成为开发者三步完成账号的基本注册与认证:STEP1:点击注册虹软AI开放平台右上角注册选项,完成注册流程.STEP2:首次使用,登录后进入开发者中心,点击账号管理完成企业或者个人认证,若未进行实名认证 ...
- Ubuntu 服务器443端口证书配置
配置虚拟主机: cd /etc/apache2/sites-available 从默认的模板文件中复制过来一份进行自己的配置: sudo cp ./default-ssl.conf ./mysite1 ...
- .net c#将数据库数据对象转换为实体值对象
using System; using System.Data; namespace Sunlib { public static class DataHelper { //将数据库数据对象转换为实体 ...
- R语言学习——图形初阶之折线图与图形参数控制
plot()是R中为对象作图的一个泛型函数(它的输出将根据所绘制对象类型的不同而变化):plot(x,y,type="b")表示将x置于横轴,y置于纵轴,绘制点集(x,y),然后使 ...
- [题解] P2513 [HAOI2009]逆序对数列
动态规划,卡常数 题目地址 设\(F[X][Y]\)代表长度为\(X\)的序列,存在\(Y\)组逆序对的方案数量. 考虑\(F[X][i]\)向\(F[X+1][i]\)转移: 把数字\(X+1\)添 ...
- 史上最全的Spring-Boot-Starter开发手册
1.前面的话 我们都知道可以使用 SpringBoot 快速的开发基于 Spring 框架的项目.由于围绕 SpringBoot 存在很多开箱即用的 Starter 依赖,使得我们在开发业务代码时能够 ...
- dump解析入门-用VS解析dump文件进行排障
突然有一天部署在服务器的一个应用挂掉了,没办法只能进入服务器打开 [事件查看器]查看下,好不容易找到了打开后一脸懵逼 事件查看器查到的内容根本对我们排障没有任何作用. 在这个时候如果有对应的dump文 ...