【洛谷P1516】青蛙的约会
题目大意:给定 \(a,b,c\),求线性同余方程 \(ax+by=c\) 的最小正整数解。
题解:首先判断方程是否有解,若 c 不能整出 a 与 b 的最大公约数,则无解。若有解,则利用扩展欧几里得算法先求出 \(ax'+by'=gcd(a,b)\) 的一组解,再根据倍数进行缩放即可得到原不定方程的一组解。求最小正整数解可以根据公式 \((x\%mod+mod)\%mod\) 得出,原因如下:C++ 负数取模为截断机制,即:不会向下取整,直接进行截断。因此,若 x 为负数,则取模之后会变成绝对值小于 mod 的最大负数,再利用加 mod % mod 即可得出正确结果。另外,对于有解的同余方程的一组通解为 \(x=x_0+{b\over d}*k\)。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
ll m,n,a,b,L,mod;
ll exgcd(ll a,ll b,ll &x,ll &y){
if(!b)return x=1,y=0,a;
ll d=exgcd(b,a%b,x,y),z=x;
x=y,y=z-a/b*y;
return d;
}
int main(){y
ll x,y;
scanf("%lld%lld%lld%lld%lld",&a,&b,&m,&n,&L);
if(n>m)swap(m,n),swap(a,b);
ll d=exgcd(m-n,L,x,y);
if((b-a)%d)puts("Impossible");
else{
ll mod=L/d;
printf("%lld\n",(x*(b-a)/d%mod+mod)%mod);
}
return 0;
}
【洛谷P1516】青蛙的约会的更多相关文章
- 洛谷 P1516 青蛙的约会 解题报告
P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...
- 洛谷——P1516 青蛙的约会
P1516 青蛙的约会 题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...
- 洛谷 p1516 青蛙的约会 题解
dalao们真是太强了,吊打我无名蒟蒻 我连题解都看不懂,在此篇题解中,我尽量用语言描述,不用公式推导(dalao喜欢看公式的话绕道,这篇题解留给像我一样弱的) 进入正题 如果不会扩展欧里几德的话请先 ...
- 洛谷P1516 青蛙的约会(扩展欧几里德)
洛谷题目传送门 很容易想到,如果他们相遇,他们初始的位置坐标之差\(x-y\)和跳的距离\((n-m)t\)(设\(t\)为跳的次数)之差应该是模纬线长\(l\)同余的,即\((n-m)t\equiv ...
- 洛谷P1516 青蛙的约会
题目描述 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清 ...
- 洛谷 P1516 青蛙的约会
https://www.luogu.org/problemnew/show/P1516#sub 题意还是非常好理解的..... 假如这不是一道环形的跑道而是一条直线,你会怎样做呢? 如果是我就会列一个 ...
- P1516 青蛙的约会和P2421 [NOI2002]荒岛野人
洛谷 P1516 青蛙的约会 . 算是手推了一次数论题,以前做的都是看题解,虽然这题很水而且还交了5次才过... 求解方程\(x+am\equiv y+an \pmod l\)中,\(a\)的最小整数 ...
- 【题解】P1516 青蛙的约会(Exgcd)
洛谷P1516:https://www.luogu.org/problemnew/show/P1516 思路: 设两只青蛙跳了T步 则A的坐标为X+mT B的坐标为Y+nT 要使他们相遇 则满足: ...
- P1516 青蛙的约会
P1516 青蛙的约会x+mt-p1L=y+nt-p2L(m-n)t+L(p2-p1)=y-x令p=p2-p1(m-n)t+Lp=y-x然后套扩欧就完事了 #include<iostream&g ...
- 解题报告:luogu P1516 青蛙的约会
题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...
随机推荐
- asp.net core 2.1 部署 centos7
asp.net core 2.1 部署 centos7 Kestrel 非常适合从 ASP.NET Core 提供动态内容. 但是,Web 服务功能不像服务器(如 IIS.Apache 或 Nginx ...
- ffmpeg相关函数整理
1.av_read_frame() 该函数用于读取具体的音/视频帧数据,从流中读取数据帧到 AVPacket,AVPacket保存仍然是未解码的数据 int av_read_frame(AVForma ...
- AngularJS学习之旅—AngularJS Scope作用域(五)
1.AngularJS Scope(作用域) Scope(作用域) 是应用在 HTML (视图) 和 JavaScript (控制器)之间的纽带. Scope 是一个对象,有可用的方法和属性. Sco ...
- JavaScript(二)数据类型(一)
计算机程序的运行需要对值进行操作,在编程语言中值的类型被称作数据类型,编程语言最基本的特性就是能够支持多种数据类型.当程序需要将值保存起来以备将来使用时,便将其赋值给一个变量.变量是一个值的符号名称, ...
- Python爬虫之正则表达式(1)
廖雪峰正则表达式学习笔记 1:用\d可以匹配一个数字:用\w可以匹配一个字母或数字: '00\d' 可以匹配‘007’,但是无法匹配‘00A’; ‘\d\d\d’可以匹配‘010’: ‘\w\w\d’ ...
- Ubuntu 16.04 启用 点击Launcher图标,窗口实现最小化 功能
安装了Ubuntu之后,要是每次都点击最小化按钮来实现窗口的最小化,操作起来很不方便,那么怎么样才能方便操作呢, Ubuntu 16.04 本身支持 点击应用程序Launcher图标实现最小化 功能, ...
- 复制命令(COPY)
COPY 命令: // 描述: 将一个或多个文件从一个位置复制到另一个位置. ### 注意:如果想复制文件夹,请使用 XCOPY . // 语法: copy [/a] [/b] [/d] [/v] ...
- python打印电脑串口的信息
# -*- coding:utf-8 -*- from serial.tools.list_ports import comports port_list = list(comports()) if ...
- C#基础知识之面向对象以及面向对象的三大特性
在C#基础知识之类和结构体中我详细记录了类.类成员.重载.重写.继承等知识总结.这里就记录一下对面向对象和面向对象三大特性的广义理解. 一.理解面向对象 类是面向对象编程的基本单元,面向对象思想其实就 ...
- jq轮播图插件—手写
<!DOCTYPE html><html lang="en"> <head> <meta charset="UTF-8" ...