http://acm.hdu.edu.cn/showproblem.php?pid=1003

Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 161361    Accepted Submission(s): 37794

Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
 
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 
Sample Output

Case 1: 14 1 4

Case 2: 7 1 6

 
 
 
代码:

 #include <fstream>
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib> using namespace std; #define EPS 1e-10
#define ll long long
#define INF 0x7fffffff int main()
{
//freopen("D:\\input.in","r",stdin);
//freopen("D:\\output.out","w",stdout);
int T,n,ans,tn,l,r,al,ar,t;
scanf("%d",&T);
for(int tt=;tt<=T;tt++){
scanf("%d",&n);
ans=tn=-INF;
for(int i=;i<=n;i++){
scanf("%d",&t);
if(tn<){
l=r=i;
tn=t;
}else{
tn+=t;
r=i;
}
if(tn>ans){
al=l;
ar=r;
ans=tn;
}
}
printf("Case %d:\n%d %d %d\n",tt,ans,al,ar);
if(tt!=T) puts("");
}
return ;
}

zoj1003-Max Sum (最大连续子序列之和)的更多相关文章

  1. 杭电1003 Max Sum 【连续子序列求最大和】

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1003 题目意思: 即给出一串数据,求连续的子序列的最大和 解题思路: 因为我们很容易想到用一个max ...

  2. PAT 1007 Maximum Subsequence Sum (最大连续子序列之和)

    Given a sequence of K integers { N1, N2, ..., *N**K* }. A continuous subsequence is defined to be { ...

  3. hdu1003 Max Sum【最大连续子序列之和】

    题目链接:https://vjudge.net/problem/HDU-1003 题目大意:给出一段序列,求出最大连续子序列之和,以及给出这段子序列的起点和终点. 解题思路:最长连续子序列之和问题其实 ...

  4. [CareerCup] 17.8 Contiguous Sequence with Largest Sum 连续子序列之和最大

    17.8 You are given an array of integers (both positive and negative). Find the contiguous sequence w ...

  5. PAT 1007 Maximum Subsequence Sum 最大连续子序列和

    Given a sequence of K integers { N1, N2, …, NK }. A continuous subsequence is defined to be { Ni, Ni ...

  6. [ACM_动态规划] hdu1003 Max Sum [最大连续子串和]

    Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum ...

  7. [POJ1050]To the Max (矩阵,最大连续子序列和)

    数据弱,暴力过 题意 N^N的矩阵,求最大子矩阵和 思路 悬线?不需要.暴力+前缀和过 代码 //poj1050 //n^4暴力 #include<algorithm> #include& ...

  8. 【动态规划】最大连续子序列和,最大子矩阵和,最大m子段和

    1.最大字段和问题 求一个序列最大连续子序列之和. 例如序列[-1,-2,-3,4,5,-6]的最大子段和为4 + 5 = 9. ①枚举法 int MaxSum(int n,int *a){ int ...

  9. HDU 3415 Max Sum of Max-K-sub-sequence【单调队列】

    <题目链接> 题目大意: 给你一段从1~N的圆形序列,要你求出这段圆形序列中长度不超过K的最大连续子序列之和是多少,并且输出这子序列的起点和终点. 解题分析: 既然是求连续子序列之和,我们 ...

随机推荐

  1. 廖雪峰Java1-1Java入门-java简介

    Java特点: 一种面向对象的跨平台变成语言 以字节码方式运行在虚拟机上 自带功能齐全的类库 非常活跃的开源社区支持 Java优点: 简单.健壮.安全 跨平台,一次编写,到处运行 高度优化的虚拟机 J ...

  2. [UE4]IES光源概述文件

    IES Light Profiles(IES光源概述文件) 是一条曲线,该曲线在一段弧线中定义了光源强度,虚幻引擎4将会围绕某个轴旋转该弧线,从而使得 点光源 (和从技术上讲的 聚光源,下面会提供更多 ...

  3. [UE4]C++ 动态内存分配(6种情况,好几个例子)

    1.堆内存分配 : C/C++定义了4个内存区间: 代码区,全局变量与静态变量区,局部变量区即栈区,动态存储区,即堆(heap)区或自由存储区(free store). 堆的概念: 通常定义变量(或对 ...

  4. Linux命令详解-ftp服务器配置

    1.ftp服务器配置 1.ftp安装: rpm –qa | grep ftp 2.查看安装内容: rpm-ql |more 3.启动ftp服务: service vsftpd start 4.配置文件 ...

  5. elastix php session保存地点

    这段时间要做 asterisk 的HA 放啊,需要同步session,所以做了下来研究. 1)elastix中的session 其实是存放在 /tmp/目录中的.可是/etc/php.ini中的[se ...

  6. [UE4]Visual Studio的相关插件安装:UE4.natvis和UnrealVS Extension

    转自:http://aigo.iteye.com/blog/2281182 UE4.natvis 官方文档: https://docs.unrealengine.com/latest/INT/Prog ...

  7. linux&android PPP 相关知识

    Linux&Android PPP相关FAQ   目录 Linux&Android PPP相关FAQ.. 1 一.         文档说明... 3 二.         常见调试技 ...

  8. Oracle 同一个字段的两值进行加减计算

    如 病人ID      入院日期                出院日期 00001      2016-09-01          2016-09-10 00001      2016-09-15 ...

  9. 第3章 文件I/O(2)_文件I/O系统调用及文件描述符

    2. 文件I/O系统调用及文件描述符 2.1 文件I/O系统调用 (1)主要函数 函数 功能 函数 功能 open() 打开文件 read() 读取文件 creat() 创建文件 write() 写入 ...

  10. 进行web开发时应该考虑的架构性因素

    功能实现 这个自不必说. 性能与可伸缩性 根据预期的访问量,评估机器负载情况.如果在可预期的未来一台服务器可以撑得住,则没必要使用多台服务器.需要对多个环节进行性能评估:web服务器.逻辑服务器.DB ...