Robot Motion
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10708   Accepted: 5192

Description


A robot has been programmed to follow the instructions in its path. Instructions for the next direction the robot is to move are laid down in a grid. The possible instructions are

N north (up the page) 
S south (down the page) 
E east (to the right on the page) 
W west (to the left on the page)

For example, suppose the robot starts on the north (top) side of Grid 1 and starts south (down). The path the robot follows is shown. The robot goes through 10 instructions in the grid before leaving the grid.

Compare what happens in Grid 2: the robot goes through 3 instructions only once, and then starts a loop through 8 instructions, and never exits.

You are to write a program that determines how long it takes a robot to get out of the grid or how the robot loops around.

Input

There will be one or more grids for robots to navigate. The data for each is in the following form. On the first line are three integers separated by blanks: the number of rows in the grid, the number of columns in the grid, and the number of the column in which the robot enters from the north. The possible entry columns are numbered starting with one at the left. Then come the rows of the direction instructions. Each grid will have at least one and at most 10 rows and columns of instructions. The lines of instructions contain only the characters N, S, E, or W with no blanks. The end of input is indicated by a row containing 0 0 0.

Output

For each grid in the input there is one line of output. Either the robot follows a certain number of instructions and exits the grid on any one the four sides or else the robot follows the instructions on a certain number of locations once, and then the instructions on some number of locations repeatedly. The sample input below corresponds to the two grids above and illustrates the two forms of output. The word "step" is always immediately followed by "(s)" whether or not the number before it is 1.

Sample Input

3 6 5
NEESWE
WWWESS
SNWWWW
4 5 1
SESWE
EESNW
NWEEN
EWSEN
0 0 0

Sample Output

10 step(s) to exit
3 step(s) before a loop of 8 step(s)
题意:一个迷宫,机器人从某行最上方进入,跟随每一步到达的迷宫的指示行动,问机器人是否能到达迷宫外(任意一边都可以出),或者会在何时进入圈
应用时:15min
实际用时:51min
原因:读题,x,y用反
#define ONLINE_JUDGE
#include<cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int A,B,sx,sy;
char maz[101][101];
int vis[101][101];
const int dx[4]={0,1,0,-1};
const int dy[4]={-1,0,1,0}; int dir(char ch){
if(ch=='N')return 0;
else if(ch=='E')return 1;
else if(ch=='S')return 2;
return 3;
}
void solve(){
memset(vis,0,sizeof(vis));
sx--;sy=0;
int step=0;
int fx,fy;
while(!vis[sy][sx]&&sx>=0&&sx<A&&sy>=0&&sy<B&&++step){
fx=sx;fy=sy;
vis[sy][sx]=step;
sx=dx[dir(maz[fy][fx])]+fx;
sy=dy[dir(maz[fy][fx])]+fy;
}
if(sx<0||sy<0||sx>=A||sy>=B)printf("%d step(s) to exit\n",step);
else {
printf("%d step(s) before a loop of %d step(s)\n",vis[sy][sx]-1,step+1-vis[sy][sx]);
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("output.txt","w",stdout);
#endif // ONLINE_JUDGE
while(scanf("%d%d%d",&B,&A,&sx)==3&&A&&B){ for(int i=0;i<B;i++)scanf("%s",maz[i]);
solve();
}
return 0;
}

  

快速切题 poj1573的更多相关文章

  1. 快速切题sgu127. Telephone directory

    127. Telephone directory time limit per test: 0.25 sec. memory limit per test: 4096 KB CIA has decid ...

  2. 快速切题sgu126. Boxes

    126. Boxes time limit per test: 0.25 sec. memory limit per test: 4096 KB There are two boxes. There ...

  3. 快速切题 sgu123. The sum

    123. The sum time limit per test: 0.25 sec. memory limit per test: 4096 KB The Fibonacci sequence of ...

  4. 快速切题 sgu120. Archipelago 计算几何

    120. Archipelago time limit per test: 0.25 sec. memory limit per test: 4096 KB Archipelago Ber-Islan ...

  5. 快速切题 sgu119. Magic Pairs

    119. Magic Pairs time limit per test: 0.5 sec. memory limit per test: 4096 KB “Prove that for any in ...

  6. 快速切题 sgu118. Digital Root 秦九韶公式

    118. Digital Root time limit per test: 0.25 sec. memory limit per test: 4096 KB Let f(n) be a sum of ...

  7. 快速切题 sgu117. Counting 分解质因数

    117. Counting time limit per test: 0.25 sec. memory limit per test: 4096 KB Find amount of numbers f ...

  8. 快速切题 sgu116. Index of super-prime bfs+树思想

    116. Index of super-prime time limit per test: 0.25 sec. memory limit per test: 4096 KB Let P1, P2, ...

  9. 快速切题 sgu115. Calendar 模拟 难度:0

    115. Calendar time limit per test: 0.25 sec. memory limit per test: 4096 KB First year of new millen ...

随机推荐

  1. JAVA I/O(六)多路复用IO

    在前边介绍Socket和ServerSocket连接交互的过程中,读写都是阻塞的.套接字写数据时,数据先写入操作系统的缓存中,形成TCP或UDP的负载,作为套接字传输到目标端,当缓存大小不足时,线程会 ...

  2. Memcached深入分析及内存调优

    到这里memcached的初步使用我们已经没问题了,但是了解一些它内部的机制还是十分必要的,这直接涉及到你能否把memcached给真正“用好”. Memcached的守护进程机制使用的是Unix下的 ...

  3. Eclipse的快捷键使用总结

    最近一直在使用Idea开发项目,导致之前一直使用的Eclipse快捷键忘记的差不多了,现在稍微整理了一些,方便以后可以快速切换回来. 常用的Eclipse快捷键总结: Ctrl+S 保存当前正在编辑的 ...

  4. babun安装,整合到cmder

    babun Babun的特性: 预装了Cygwin以及许多的插件 默认的命令行安装工具,没有管理员权限要求. 预装了 pact工具,一个高级的包管理器,类似 apt-get或yum xTerm-256 ...

  5. spring boot 使用@ConfigurationProperties

    有时候有这样子的情景,我们想把配置文件的信息,读取并自动封装成实体类,这样子,我们在代码里面使用就轻松方便多了,这时候,我们就可以使用@ConfigurationProperties,它可以把同类的配 ...

  6. BZOJ1297: [SCOI2009]迷路 矩阵快速幂

    Description windy在有向图中迷路了. 该有向图有 N 个节点,windy从节点 0 出发,他必须恰好在 T 时刻到达节点 N-1. 现在给出该有向图,你能告诉windy总共有多少种不同 ...

  7. Tomcat Connector

    转自: http://blog.csdn.net/aesop_wubo/article/details/7617416 如下图所示,Tomcat服务器主要有两大核心模块组成:连接器和容器,本节只分析连 ...

  8. UVa 11212 编辑书稿(dfs+IDA*)

    https://vjudge.net/problem/UVA-11212 题意:给出n个自然段组成的文章,将他们排列成1,2...,n.每次只能剪切一段连续的自然段,粘贴时按照顺序粘贴. 思路:状态空 ...

  9. C++指针详解(转)

    指针的概念 指针是一个特殊的变量,它里面存储的数值被解释成为内存里的一个地址.要搞清一个指针需要搞清指针的四方面的内容:指针的类型,指针所指向的类型,指针的值或者叫指针所指向的内存区,还有指针本身所占 ...

  10. 【Robot Framework 项目实战 00】环境搭建

    前言 我们公司在推广RF这个框架做后端接口测试,力求让同事们能更快的完成服务端需求的自动化,作为主导者之一,决定分享一些经验,方便后来者. 我会从安装部署.Request.selenium.自定义框架 ...