# 导入第三方模块
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.linear_model import Ridge,RidgeCV

# 读取糖尿病数据集
diabetes = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\08\\diabetes.xlsx', sep = '')
print(diabetes.shape)
print(diabetes.head())
# 构造自变量(剔除患者性别、年龄和因变量)
predictors = diabetes.columns[2:-1]
# 将数据集拆分为训练集和测试集
X_train, X_test, y_train, y_test = model_selection.train_test_split(diabetes[predictors], diabetes['Y'],test_size = 0.2, random_state = 1234 )
# 构造不同的Lambda值
Lambdas = np.logspace(-5, 2, 200)
print(Lambdas.shape)
# 构造空列表,用于存储模型的偏回归系数
ridge_cofficients = []
# 循环迭代不同的Lambda值
for Lambda in Lambdas:
ridge = Ridge(alpha = Lambda, normalize=True)
ridge.fit(X_train, y_train)
ridge_cofficients.append(ridge.coef_)
print(np.shape(ridge_cofficients))
# 绘制Lambda与回归系数的关系
# 中文乱码和坐标轴负号的处理
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False
# 设置绘图风格
plt.style.use('ggplot')
plt.plot(Lambdas, ridge_cofficients)
# 对x轴作对数变换
plt.xscale('log')
# 设置折线图x轴和y轴标签
plt.xlabel('Lambda')
plt.ylabel('Cofficients')
# 图形显示
plt.show()

# 岭回归模型的交叉验证
# 设置交叉验证的参数,对于每一个Lambda值,都执行10重交叉验证
ridge_cv = RidgeCV(alphas = Lambdas, normalize=True, scoring='neg_mean_squared_error', cv = 10)
print(ridge_cv)
# 模型拟合
ridge_cv.fit(X_train, y_train)
# 返回最佳的lambda值
ridge_best_Lambda = ridge_cv.alpha_
print(ridge_best_Lambda)

# 导入第三方包中的函数
from sklearn.metrics import mean_squared_error

# 基于最佳的Lambda值建模
ridge = Ridge(alpha = ridge_best_Lambda, normalize=True)
ridge.fit(X_train, y_train)
# 返回岭回归系数
pd.Series(index = ['Intercept'] + X_train.columns.tolist(),data = [ridge.intercept_] + ridge.coef_.tolist())
# 预测
ridge_predict = ridge.predict(X_test)
# 预测效果验证
RMSE = np.sqrt(mean_squared_error(y_test,ridge_predict))
print(RMSE)

# 导入第三方模块中的函数
from sklearn.linear_model import Lasso,LassoCV

# 构造空列表,用于存储模型的偏回归系数
lasso_cofficients = []
for Lambda in Lambdas:
lasso = Lasso(alpha = Lambda, normalize=True, max_iter=10000)
lasso.fit(X_train, y_train)
lasso_cofficients.append(lasso.coef_)

# 绘制Lambda与回归系数的关系
plt.plot(Lambdas, lasso_cofficients)
# 对x轴作对数变换
plt.xscale('log')
# 设置折线图x轴和y轴标签
plt.xlabel('Lambda')
plt.ylabel('Cofficients')
# 显示图形
plt.show()

# LASSO回归模型的交叉验证
lasso_cv = LassoCV(alphas = Lambdas, normalize=True, cv = 10, max_iter=10000)
lasso_cv.fit(X_train, y_train)
# 输出最佳的lambda值
lasso_best_alpha = lasso_cv.alpha_
print(lasso_best_alpha)
# 基于最佳的lambda值建模
lasso = Lasso(alpha = lasso_best_alpha, normalize=True, max_iter=10000)
lasso.fit(X_train, y_train)
# 返回LASSO回归的系数
pd.Series(index = ['Intercept'] + X_train.columns.tolist(),data = [lasso.intercept_] + lasso.coef_.tolist())

# 预测
lasso_predict = lasso.predict(X_test)
# 预测效果验证
RMSE = np.sqrt(mean_squared_error(y_test,lasso_predict))
print(RMSE)

# 导入第三方模块
from statsmodels import api as sms

# 为自变量X添加常数列1,用于拟合截距项
X_train2 = sms.add_constant(X_train)
X_test2 = sms.add_constant(X_test)

# 构建多元线性回归模型
linear = sms.formula.OLS(y_train, X_train2).fit()
# 返回线性回归模型的系数
print(linear.params)

# 模型的预测
linear_predict = linear.predict(X_test2)
# 预测效果验证
RMSE = np.sqrt(mean_squared_error(y_test,linear_predict))
print(RMSE)

吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型的更多相关文章

  1. 吴裕雄 数据挖掘与分析案例实战(15)——DBSCAN与层次聚类分析

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltimport seaborn as snsfr ...

  2. 吴裕雄 数据挖掘与分析案例实战(14)——Kmeans聚类分析

    # 导入第三方包import pandas as pdimport numpy as np import matplotlib.pyplot as pltfrom sklearn.cluster im ...

  3. 吴裕雄 数据挖掘与分析案例实战(13)——GBDT模型的应用

    # 导入第三方包import pandas as pdimport matplotlib.pyplot as plt # 读入数据default = pd.read_excel(r'F:\\pytho ...

  4. 吴裕雄 数据挖掘与分析案例实战(12)——SVM模型的应用

    import pandas as pd # 导入第三方模块from sklearn import svmfrom sklearn import model_selectionfrom sklearn ...

  5. 吴裕雄 数据挖掘与分析案例实战(10)——KNN模型的应用

    # 导入第三方包import pandas as pd # 导入数据Knowledge = pd.read_excel(r'F:\\python_Data_analysis_and_mining\\1 ...

  6. 吴裕雄 数据挖掘与分析案例实战(8)——Logistic回归分类模型

    import numpy as npimport pandas as pdimport matplotlib.pyplot as plt # 自定义绘制ks曲线的函数def plot_ks(y_tes ...

  7. 吴裕雄 数据挖掘与分析案例实战(5)——python数据可视化

    # 饼图的绘制# 导入第三方模块import matplotlibimport matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['S ...

  8. 吴裕雄 数据挖掘与分析案例实战(4)——python数据处理工具:Pandas

    # 导入模块import pandas as pdimport numpy as np # 构造序列gdp1 = pd.Series([2.8,3.01,8.99,8.59,5.18])print(g ...

  9. 吴裕雄 数据挖掘与分析案例实战(3)——python数值计算工具:Numpy

    # 导入模块,并重命名为npimport numpy as np# 单个列表创建一维数组arr1 = np.array([3,10,8,7,34,11,28,72])print('一维数组:\n',a ...

随机推荐

  1. TraceView 使用详解 android eclipse

    先看命令 (配置好环境变量的情况下,直接traceview+空格+ trace文件路径即可): TraceView是什么 Traceview是android平台配备一个很好的性能分析的工具.它可以通过 ...

  2. ALGO-6_蓝桥杯_算法训练_安慰奶牛

    记: 本题目考的是最小生成数,可使用Kruskal算法 第一次,20分 原因:使用动态数组,有概率报运行错误(大雾= =) 第二次,100分 原因:改用静态数组,一次过 示例代码: #include ...

  3. 以后可能会遇到的问题记录 .send_keys 无法输入的情况

    1.send_keys(输入不了字符)也出现这种问题,后来用set_value 可以了 send_keys():调用当前系统输入法键盘,进行输入时可能无法到达自己想  要的结果  set_text() ...

  4. dubbo框架及dubbo环境搭建

    https://blog.csdn.net/liuhaiabc/article/details/52781351 dubbo框架及dubbo环境搭建

  5. 6-3-1appium iOS

    环境准备 brew install carthage npm i -g ios-deploy brew install libimobiledevice --HEAD brew install ide ...

  6. ThinkPHP框架学习摘要

    框架在linux与win下区别 1.文件权限设置: 2.大小写不规范: 学习框架的基本思路 : 1.如何收入并配置框架: 2.Controller的命名规范与书写规范: 3.Model的命名规范与书写 ...

  7. HTML5 Canvas ( 图形的透明度和遮盖 ) globalAlpha, globalCompositeOperation

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. 【原】解决Debug JDK source 无法查看局部变量的问题方案(重新编译rt.jar包)

    一.问题阐述 首先我们要明白JDK source为什么在debug的时候无法观察局部变量,因为在jdk中,sun对rt.jar中的类编译时,去除了调试信息,这样在eclipse中就不能看到局部变量的值 ...

  9. [PHP]用户登陆中间件

    Laravel 4中,可以使用Route::filter,而在Laravel 5中,没有了filter.php文件,官方建议使用中间件做. 下面是用户登陆的测试例子,涉及到的一些方法和使用,先参见这里 ...

  10. J2SE 8的输入输出--缓冲

    FileChannel带缓冲 //1. read the point location FileChannel channelRead = FileChannel.open(Paths.get(&qu ...