1、安装grpc

gRPC 的安装:

$ pip install grpcio

安装 ProtoBuf 相关的 python 依赖库:

$ pip install protobuf

安装 python grpc 的 protobuf 编译工具:

$ pip install grpcio-tools

2、在serving目录运行脚本,生成*_pb2.py文件

 # run at root of tensorflow_serving repo

 TARGET_DIR="$1"

 python -m grpc.tools.protoc \
-I . -I ./tensorflow \
--python_out "$TARGET_DIR" \
tensorflow_serving/servables/tensorflow/saved_model_bundle_source_adapter.proto \
tensorflow_serving/servables/tensorflow/session_bundle_config.proto \
tensorflow_serving/config/platform_config.proto pushd $TARGET_DIR touch tensorflow_serving/__init__.py
touch tensorflow_serving/config/__init__.py
touch tensorflow_serving/servables/__init__.py
touch tensorflow_serving/servables/tensorflow/__init__.py popd
sh gen-tf-serving-proto-py.sh /tmp

3、将生成的*_pb2.py文件cp出来

cp -r /tmp/tensorflow_serving .

4、在当前目录运行gen-platform-config.py

 # -*- coding: utf-8 -*-

 import tensorflow as tf

 from tensorflow_serving.config import platform_config_pb2
from tensorflow_serving.servables.tensorflow import session_bundle_config_pb2
from tensorflow_serving.servables.tensorflow import saved_model_bundle_source_adapter_pb2 session_config = tf.ConfigProto()
# config whatever you want
session_config.gpu_options.allow_growth = True
session_config.gpu_options.per_process_gpu_memory_fraction = 0.4 legacy_config=session_bundle_config_pb2.SessionBundleConfig(session_config=session_config)
adapter = saved_model_bundle_source_adapter_pb2.SavedModelBundleSourceAdapterConfig(legacy_config=legacy_config) config_map = platform_config_pb2.PlatformConfigMap()
config_map.platform_configs['tensorflow'].source_adapter_config.Pack(adapter) print(config_map)

5、生成platform_config_file.cfg文件

 platform_configs {
key: "tensorflow"
value {
source_adapter_config {
[type.googleapis.com/tensorflow.serving.SavedModelBundleSourceAdapterConfig] {
legacy_config {
session_config {
gpu_options {
per_process_gpu_memory_fraction: 0.4
allow_growth: true
}
}
}
}
}
}
}

6、运行tf_serving时添加参数--platform_config_file=./conf/platform_config_file.cfg

7、若同时需要配置batching_parameters_file,则需要将batching参数写入到platform_config_file.cfg内

 platform_configs {
key: "tensorflow"
value {
source_adapter_config {
[type.googleapis.com/tensorflow.serving.SavedModelBundleSourceAdapterConfig] {
legacy_config {
batching_parameters {
max_batch_size { value: }
batch_timeout_micros { value: }
max_enqueued_batches { value: }
num_batch_threads { value: }
}
session_config {
allow_soft_placement: true
gpu_options {
per_process_gpu_memory_fraction: 0.4
allow_growth: true
}
}
}
}
}
}
}

详细信息参照:https://github.com/tensorflow/serving/issues/342

我运行后生成的cfg文件为

 platform_configs {
key: "tensorflow"
value {
source_adapter_config {
type_url: "type.googleapis.com/tensorflow.serving.SavedModelBundleSourceAdapterConfig"
value: "\302>\017\022\r2\013\t\232\231\231\231\231\231\331? \001"
}
}
}

并不能生成清晰的text格式的配置文件,目前还未找到原因

tensorflow serving 编写配置文件platform_config_file的方法的更多相关文章

  1. TensorFlow Serving简介

    一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Ser ...

  2. 学习笔记TF067:TensorFlow Serving、Flod、计算加速,机器学习评测体系,公开数据集

    TensorFlow Serving https://tensorflow.github.io/serving/ . 生产环境灵活.高性能机器学习模型服务系统.适合基于实际数据大规模运行,产生多个模型 ...

  3. tensorflow serving

    1.安装tensorflow serving 1.1确保当前环境已经安装并可运行tensorflow 从github上下载源码 git clone --recurse-submodules https ...

  4. 基于TensorFlow Serving的深度学习在线预估

    一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1] ...

  5. Tensorflow serving的编译

    Tensorflow serving提供了部署tensorflow生成的模型给线上服务的方法,包括模型的export,load等等. 安装参考这个 https://github.com/tensorf ...

  6. tensorflow 模型保存与加载 和TensorFlow serving + grpc + docker项目部署

    TensorFlow 模型保存与加载 TensorFlow中总共有两种保存和加载模型的方法.第一种是利用 tf.train.Saver() 来保存,第二种就是利用 SavedModel 来保存模型,接 ...

  7. 通过Docker构建TensorFlow Serving

    最近在用Docker搭建TensorFlow Serving, 在查阅了官方资料后,发现其文档内有不少冗余的步骤,便一步步排查,终于找到了更简单的Docker镜像构建方法.这里有两种方式: 版本一: ...

  8. tensorflow serving 之minist_saved_model.py解读

    最近在学习tensorflow serving,但是就这样平淡看代码可能觉得不能真正思考,就想着写个文章看看,自己写给自己的,就像自己对着镜子演讲一样,写个文章也像自己给自己讲课,这样思考的比较深,学 ...

  9. 用yaml来编写配置文件

    yaml是一个数据序列化的标准,适用于所有开发语言,最大的特点是可读性好. yaml的一个主要应用方向就是编写配置文件,有非常多的系统和框架采用yaml进行配置. yaml有以下基本规则: 1.大小写 ...

随机推荐

  1. 《ASP.NET Web API 2框架揭秘》

    <ASP.NET Web API 2框架揭秘> 基本信息 作者: 蒋金楠 出版社:电子工业出版社 ISBN:9787121235368 上架时间:2014-7-5 出版日期:2014 年7 ...

  2. Asp.Net 获取物理路径

    一.AppDomain 1.AppDomin获取当前前程序域目录 2.不需要请求上线文实例,例如在Global.ascx中访问等 //网站物理目录 AppDomain.CurrentDomain.Ba ...

  3. Gradle语法基础解析

    在从ADT转移到AndroidStudio下开发,必然会遇到Gradle脚本打包的问题.看懂一个脚本最基本的前提就是了解它的语法,我在转移开发环境的过程中,也开始接触学习Gradle,在此做了一些总结 ...

  4. 试用ArcGIS Server 10.1 X64 for windows

    ArcGIS 10.1 发布已经很久了,其Server只支持x64,为此我还专门下载安装了windows Server 2003 x64,进行安装测试. 我测试了集群功能,比起10.0 ,没有使用域控 ...

  5. javascript 的面向对象特性参考

    最近在看用javascript+css实现rich client.javascript 也是一个蛮有意思的语言.特别是其面向对象的实现和其他“标准”的OO launguage有很大的不同.但是,都是动 ...

  6. 利用vue-cropper做的关于图片裁剪、压缩、上传、预览等做的一个公共组件

    公共组件: <template> <div> <div class="upload-box"> <div class="imag ...

  7. android Logger 一二三

    我们在开发Android应用的过程中可以很方便地使用Log信息来调试程序,这都归功于Android的Logger驱动为用户层提供的Log支持.无论是底层的源代码还是上层的应用,我们都可以使用Logge ...

  8. 【Kafka】Kafka-配置参数详解-参数调优

    Kafka-配置参数详解-参数调优 kafka 目录_百度搜索 为什么kafka使用磁盘而不是内存 - CSDN博客 Kafka 配置说明 - 風吹云动 - 博客园 kafka生产服务器配置 - Or ...

  9. 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》

    https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...

  10. Linux系统性能优化

    CPU性能评估 通过下面的命令能了解到CPU是否出现性能瓶颈,再结合top.ps等命令进一步检查,即可定位到那些进程导致CPU负载过大 vmstat命令:查看CPU负载. [blackfox@loca ...