洛谷 P1407 [国家集训队]稳定婚姻 解题报告
P1407 [国家集训队]稳定婚姻
题目描述
我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关。
25岁的姗姗和男友谈恋爱半年就结婚,结婚不到两个月就离婚,是典型的“闪婚闪离”例子,而离婚的导火线是两个人争玩电脑游戏,丈夫一气之下,把电脑炸烂。
有社会工作者就表示,80后求助个案越来越多,有些是与父母过多干预有关。而根据民政部的统计,中国离婚五大城市首位是北京,其次是上海、深圳,广州和厦门,那么到底是什么原因导致我国成为离婚大国呢?有专家分析说,中国经济急速发展,加上女性越来越来越独立,另外,近年来简化离婚手续是其中一大原因。
——以上内容摘自第一视频门户
现代生活给人们施加的压力越来越大,离婚率的不断升高已成为现代社会的一大问题。而其中有许许多多的个案是由婚姻中的“不安定因素”引起的。妻子与丈夫吵架后,心如绞痛,于是寻求前男友的安慰,进而夫妻矛盾激化,最终以离婚收场,类似上述的案例数不胜数。
我们已知\(n\)对夫妻的婚姻状况,称第i对夫妻的男方为\(B_i\),女方为\(G_i\)。若某男\(B_i\)与某女\(G_j\)曾经交往过(无论是大学,高中,亦或是幼儿园阶段,\(i≠j\)),则当某方与其配偶(即\(B_i\)与\(G_i\)或\(B_j\)与\(G_j\))感情出现问题时,他们有私奔的可能性。不妨设\(B_i\)和其配偶\(G_i\)感情不和,于是\(B_i\)和\(G_j\)旧情复燃,进而Bj因被戴绿帽而感到不爽,联系上了他的初恋情人\(G_k\)……一串串的离婚事件像多米诺骨牌一般接踵而至。若在\(B_i\)和\(G_i\)离婚的前提下,这2\(n\)个人最终依然能够结合成\(n\)对情侣,那么我们称婚姻i为不安全的,否则婚姻i就是安全的。
给定所需信息,你的任务是判断每对婚姻是否安全。
输入输出格式
输入格式:
第一行为一个正整数\(n\),表示夫妻的对数;
以下\(n\)行,每行包含两个字符串,表示这\(n\)对夫妻的姓名(先女后男),由一个空格隔开;
第\(n+2\)行包含一个正整数\(m\),表示曾经相互喜欢过的情侣对数;
以下\(m\)行,每行包含两个字符串,表示这\(m\)对相互喜欢过的情侣姓名(先女后男),由一个空格隔开。
输出格式:
输出文件共包含\(n\)行,第i行为“\(Safe\)”(如果婚姻i是安全的)或“\(Unsafe\)”(如果婚姻i是不安全的)。
说明
对于20%的数据,\(n\)≤20;
对于40%的数据,\(n\)≤100,\(m\)≤400;
对于100%的数据,所有姓名字符串中只包含英文大小写字母,大小写敏感,长度不大于8,保证每对关系只在输入文件中出现一次,输入文件的最后m行不会出现未在之前出现过的姓名,这2n个人的姓名各不相同,1≤\(n\)≤4000,0≤\(m\)≤20000。
最初我的做法是所有边连成无向边跑割边,如果夫妻线是割边则代表是安全的,反之不是。可以先别往下划,想想为什么这个想法是错误的。
下面进入正题,很容易想到一种暴力算法,枚举断掉的夫妻边跑二分图匹配,复杂度\(O(n^2m)\),期望得分40~50分,实际得分不知道。
暴力算法一般都能带给我们一个思考方向或者启示,这题也不例外。
我们将原本连上夫妻边的一个图看做是一个已经完成匹配的模型,当匹配边\(e\)断掉后,\(e\)所连接的两个点就断开了,为了保证匹配数不减小,我们跑假使开始跑二分图匹配,因为所有的点都是匹配好的,所以当某一对点失去配对后,一定要去NTR别人,这时候即是一个对边反悔的时机,也就是寻找增广路径。我们将夫妻关系由女向男连上一条有向边表示可能反悔。而情侣关系则表示原本的正边由男连女的有向边。
继续想,当断掉\(E(u,v)\)后,我们从\(u\)开始寻找增广路,因为我们不能失去任何一个配对所以增广路的末尾一个一定是\(v\),也就是说,如果能跑到\(v\),那么\(E(u,v)\)这条边一定在一个环上。
由此,问题转为了有向图求强联通分量。
到这里,跑割边的错误也就非常明显了。
code:
#include <cstdio>
#include <iostream>
#include <map>
using namespace std;
const int N=8010;
const int M=20010;
int m,n=0;
string c1,c2;
map <string,int > ma;
struct Edge
{
int to,next;
}edge[(M<<1)+N];
int head[N],cnt=1,is[(M<<1)+N];
void add(int u,int v)
{
edge[++cnt].next=head[u];edge[cnt].to=v;head[u]=cnt;
}
int time=0,low[N],dfn[N],s[N],tot=0,ha[N],in[N],n0=0;
void push(int x){s[++tot]=x;}
void pop(){tot--;}
void tarjan(int now)
{
dfn[now]=low[now]=++time;
in[now]=1;
push(now);
for(int i=head[now];i;i=edge[i].next)
{
int v=edge[i].to;
if(!dfn[v])
{
tarjan(v);
low[now]=min(low[now],low[v]);
}
else if(in[v])
low[now]=min(low[now],dfn[v]);
}
if(dfn[now]==low[now])
{
n0++;int k;
do
{
k=s[tot];
pop();
ha[k]=n0;
in[k]=0;
}while(k!=now);
}
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
cin>>c1>>c2;
ma[c1]=i,ma[c2]=n+i;
add(i,n+i);
}
scanf("%d",&m);
for(int i=1;i<=m;i++)
{
cin>>c1>>c2;
add(ma[c2],ma[c1]);
}
for(int i=1;i<=n<<1;i++)
if(!dfn[i])
tarjan(i);
for(int i=1;i<=n;i++)
if(ha[i]==ha[i+n])
printf("Unsafe\n");
else
printf("Safe\n");
return 0;
}
2018.6.10
洛谷 P1407 [国家集训队]稳定婚姻 解题报告的更多相关文章
- 洛谷 P1407 [国家集训队]稳定婚姻
洛谷 这个题面很有意思,像我这样的菜鸡,完全不需考虑婚姻的稳定 性 问题. tarjan裸题,直接讲算法吧: 原配夫妻之间分别连一条边,小情人之间反向连边. 这时候我们会发现一个性质,如果婚姻稳定,那 ...
- [洛谷P1407][国家集训队]稳定婚姻
题目大意:有$n$对夫妻和$m$对情人,如果一对情人中的两人都离婚了,那么他们可以结为夫妻.对于每一对夫妻,若他们离婚后所有人依然可以结婚,那么就是不安全的,否则是安全的.问每一对夫妻是否安全. 题解 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P1501 [国家集训队]Tree II 解题报告
P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...
- 洛谷 P2757 [国家集训队]等差子序列 解题报告
P2757 [国家集训队]等差子序列 题目描述 给一个\(1\)到\(N\)的排列\(\{A_i\}\),询问是否存在 \[1 \le p_1<p_2<p_3<p_4<p_5& ...
- 洛谷 P1527 [国家集训队]矩阵乘法 解题报告
P1527 [国家集训队]矩阵乘法 题目描述 给你一个\(N*N\)的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第\(K\)小数. 输入输出格式 输入格式: 第一行两个数\(N,Q\),表示矩阵大 ...
- 洛谷 P1903 [国家集训队]数颜色 解题报告
P1903 [国家集训队]数颜色 题目描述 墨墨购买了一套\(N\)支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1.Q L R代表询问你从第\(L\) ...
- 【题解】P1407国家集训队稳定婚姻
[题解][P1407 国家集训队]稳定婚姻 很好的一道建模+图论题. 婚姻关系?很像二分图匹配呀,不过不管怎么办先建模再说.婚姻关系显然用图方面的知识解决.建图! 它给定的是字符串,所以我们使用\(a ...
- [Luogu] P1407 [国家集训队]稳定婚姻
题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的姗姗和男友谈恋爱半年就结婚,结婚不到 ...
随机推荐
- eclipse取消空格、等号、分号自动录入
默认eclipse中按空格.等号.分号等键时,会将提示框中的文字输入到编辑内容中,但是很多时候我们并不希望录入,可如下设置. 1.打开 Eclipse -> Window -> Perfe ...
- Linux中2>&1使用
转:2>&1使用 一 相关知识 1)默认地,标准的输入为键盘,但是也可以来自文件或管道(pipe |).2)默认地,标准的输出为终端(terminal),但是也可以重定向到文件,管道或后 ...
- Python 学习 第六篇:迭代和解析
Python中的迭代是指按照元素的顺序逐个调用的过程,迭代概念包括:迭代协议.可迭代对象和迭代器三个概念. 迭代协议是指有__next__()函数的对象会前进到下一个结果,而到达系列的末尾时,则会引发 ...
- Java代码操作properties文件(读取,新增/修改,删除)
项目中需要用到操作properties文件中的数据,记录一下 package com.bonc.savepic.save; import java.io.FileNotFoundException; ...
- 使用Java+Kotlin双语言的LeetCode刷题之路(一)
LeetCode learning records based on Java,Kotlin,Python...Github 地址 序号对应 LeetCode 中题目序号 1 两数之和 给定一个整数数 ...
- 软件工程(GZSD2015) 第三次作业提交进度
第三次作业题目请查看这里:软件工程(GZSD2015)第三次作业 开始进入第三次作业提交进度记录中,童鞋们,虚位以待哈... 2015年4月19号 徐镇.尚清丽,C语言 2015年4月21号 毛涛.徐 ...
- 收获,不止oracle
物理体系 体系结构图 缩放 1.Oracle由实例和数据库组成,上半部分的直角方框为实例instance,下半部分的圆角方框为数据库Database. 2.实例是由一个开辟的共享内存区SGA(Syst ...
- 将J2EE的Web项目设置为支持Activiti
<natures> <nature>org.eclipse.jem.workbench.JavaEMFNature</nature> <nature>o ...
- jq源码解析之绑在$,jQuery上面的方法
1.当我们用$符号直接调用的方法.在jQuery内部是如何封装的呢?有没有好奇心? // jQuery.extend 的方法 是绑定在 $ 上面的. jQuery.extend( { //expand ...
- [CB]2018全球半导体营收4700亿美元 三星继续碾压英特尔
2018全球半导体营收4700亿美元 三星继续碾压英特尔 https://www.cnbeta.com/articles/tech/808833.htm Gartner最新报告显示,2018年全球半导 ...