jieba分词器
始终觉得官方文档是最好的学习途径。嗯,我只是一个大自然的搬运工。传送门https://github.com/fxsjy/jieba
1.分词
jieba.cut
方法接受三个输入参数: 需要分词的字符串;cut_all 参数用来控制是否采用全模式;HMM 参数用来控制是否使用 HMM 模型jieba.cut_for_search
方法接受两个参数:需要分词的字符串;是否使用 HMM 模型。该方法适合用于搜索引擎构建倒排索引的分词,粒度比较细- 待分词的字符串可以是 unicode 或 UTF-8 字符串、GBK 字符串。注意:不建议直接输入 GBK 字符串,可能无法预料地错误解码成 UTF-8
jieba.cut
以及jieba.cut_for_search
返回的结构都是一个可迭代的 generator,可以使用 for 循环来获得分词后得到的每一个词语(unicode),或者用jieba.lcut
以及jieba.lcut_for_search
直接返回 listjieba.Tokenizer(dictionary=DEFAULT_DICT)
新建自定义分词器,可用于同时使用不同词典。jieba.dt
为默认分词器,所有全局分词相关函数都是该分词器的映射。
# encoding=utf-8 import jieba seg_list = jieba.cut("我来到北京清华大学", cut_all=True) print("Full Mode: " + "/ ".join(seg_list)) # 全模式 seg_list = jieba.cut("我来到北京清华大学", cut_all=False) print("Default Mode: " + "/ ".join(seg_list)) # 精确模式 seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式 print(", ".join(seg_list)) seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式 print(", ".join(seg_list))
结果:
【全模式】: 我/ 来到/ 北京/ 清华/ 清华大学/ 华大/ 大学 【精确模式】: 我/ 来到/ 北京/ 清华大学 【新词识别】:他, 来到, 了, 网易, 杭研, 大厦 (此处,“杭研”并没有在词典中,但是也被Viterbi算法识别出来了) 【搜索引擎模式】: 小明, 硕士, 毕业, 于, 中国, 科学, 学院, 科学院, 中国科学院, 计算, 计算所, 后, 在, 日本, 京都, 大学, 日本京都大学, 深造
2.基于 TF-IDF 算法的关键词抽取
import jieba.analyse
- jieba.analyse.extract_tags(sentence, topK=20, withWeight=False, allowPOS=())
- sentence 为待提取的文本
- topK 为返回几个 TF/IDF 权重最大的关键词,默认值为 20
- withWeight 为是否一并返回关键词权重值,默认值为 False
- allowPOS 仅包括指定词性的词,默认值为空,即不筛选
- jieba.analyse.TFIDF(idf_path=None) 新建 TFIDF 实例,idf_path 为 IDF 频率文件
import sys sys.path.append('../') import jieba import jieba.analyse from optparse import OptionParser USAGE = "usage: python extract_tags.py [file name] -k [top k]" parser = OptionParser(USAGE) parser.add_option("-k", dest="topK") opt, args = parser.parse_args() if len(args) < 1: print(USAGE) sys.exit(1) file_name = args[0] if opt.topK is None: topK = 10 else: topK = int(opt.topK) content = open(file_name, 'rb').read() tags = jieba.analyse.extract_tags(content, topK=topK) print(",".join(tags))
jieba分词器的更多相关文章
- 自然语言处理之中文分词器-jieba分词器详解及python实战
(转https://blog.csdn.net/gzmfxy/article/details/78994396) 中文分词是中文文本处理的一个基础步骤,也是中文人机自然语言交互的基础模块,在进行中文自 ...
- Lucene.net(4.8.0) 学习问题记录五: JIEba分词和Lucene的结合,以及对分词器的思考
前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...
- 11大Java开源中文分词器的使用方法和分词效果对比
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那 ...
- widows下jieba分词的安装
在切词的时候使用到jieba分词器,安装如下: 切入到结巴包,执行 python setup.py install 安装后,可以直接在代码中引用: import jieba
- 11大Java开源中文分词器的使用方法和分词效果对比,当前几个主要的Lucene中文分词器的比较
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那 ...
- R包——jiebaR分词器
关于R的分词器jiebaR 关于R的分词器jiebaR "结巴"中文分词的R语言版本,支持最大概率法(Maximum Probability),隐式马尔科夫模型(Hidden Ma ...
- Lucene.net(4.8.0)+PanGu分词器问题记录一:分词器Analyzer的构造和内部成员ReuseStategy
前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...
- Lucene.net(4.8.0) 学习问题记录二: 分词器Analyzer中的TokenStream和AttributeSource
前言:目前自己在做使用Lucene.net和PanGu分词实现全文检索的工作,不过自己是把别人做好的项目进行迁移.因为项目整体要迁移到ASP.NET Core 2.0版本,而Lucene使用的版本是3 ...
- python环境jieba分词的安装
我的python环境是Anaconda3安装的,由于项目需要用到分词,使用jieba分词库,在此总结一下安装方法. 安装说明======= 代码对 Python 2/3 均兼容 * 全自动安装:`ea ...
随机推荐
- P3830 [SHOI2012]随机树
P3830 [SHOI2012]随机树 链接 分析: 第一问:f[i]表示有i个叶子结点的时候的平均深度,$f[i] = \frac{f[i - 1] + 2 + f[i - 1] * (i - 1) ...
- BZOJ 3561 DZY Loves Math VI
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m ...
- Nginx Windows版的服务安装和管理工具
以前研究过负载均衡,最近正在项目上实施(从来没做过小项目以上级别的东西,哈),nginx挺好,不过Windows有点为难,小流量和本地不追求性能,简单易用是目标. Nginx Windows上并没有提 ...
- ABPZero中的Name和SurName处理,以及EmailAddress解决方案(完美)。
使用ABPzero的朋友们都知道,User表中有Name和Surname两个字段,这两个字段对于国内的用户来说相当的不友好. 以及我们的一些系统中是不会涉及到EmailAddress字段.也就是说不会 ...
- jQuery中.html(“xxx”)和.append("xxx") 的区别
append是追加,html是完全替换比如<p id="1"><p>123</p></p> $("#1").ht ...
- c#基础系列2---深入理解 String
"大菜":源于自己刚踏入猿途混沌时起,自我感觉不是一般的菜,因而得名"大菜",于自身共勉. 扩展阅读:深入理解值类型和引用类型 基本概念 string(严格来说 ...
- Redis日常操作命令小结
Redis缓存服务是运维工作中比较常见的一种维护工作,下面就redis日常操作命令在此做一简单小结,以备查用: 1)连接redis服务命令# redis-cli -h redis主机ip或主机域名 - ...
- Popush End
coconut: (咳咳)作为一名后台开发者,我觉得自己在这次作业完成中最大的收获就是跟node.js的异步模型打交道.首先我得出了一个这样的结论:异步模型能够提高服务器的高性能并发请求,但是却加大了 ...
- M1/M2 总结
时光是一列不会回头的列车. 这一学期这么快就过去了,当时刚开始软件工程的那些日子还历历在目.不知道那些如风般过去的日子带给我了什么.然而我又清楚地认识到自己已经改变了. 刚开始软件工程的时候,我对团队 ...
- httprequest存储的是字符内容 而文本内容是以字节形式上传的;所以普通的取值方式无法从httprequest取到值
httprequest存储的是字符内容 而文本内容是以字节形式上传的;所以普通的取值方式无法从httprequest取到值