LOJ #6432. 「PKUSC2018」真实排名(组合数)
题面
注意排名的定义 , 分数不小于他的选手数量 !!!
题解
有点坑的细节题 ...
思路很简单 , 把每个数分两种情况讨论一下了 .
假设它为 \(x\) .
不对它进行翻倍操作 :
那么很容易发现 \(\displaystyle [\lceil \frac{x}{2}\rceil, x)\) 的数都不翻倍 . 其余部分任意 . 假设有 \(tot\) 个 .
那么这部分答案就是 \(\displaystyle \binom {n-tot - 1} {k}\) .
\(-1\) 因为它本身不能操作 .
对它进行翻倍操作 :
那么又是显然的 , \(\displaystyle [x,2x)\) 的所有数都需要翻倍 . 其余部分任意 . 假设这段有 \(tot\) 个 .
那么这部分答案就是 \(\displaystyle \binom {n - tot}{k - tot}\) .
然后当 \(x=0\) 的时候需要特殊判断 , 我们可以随意翻倍都不改变结果了 , 答案就是 \(\displaystyle \binom {n} {k}\) .
查询 \([l,r]\) 中数字的个数 , 有个巧妙的操作 . 此处 \(a\) 是排好序的
inline int Sum(int l, int r) {
if (l > r) return 0;
return upper_bound(a + 1, a + 1 + n, r) - lower_bound(a + 1, a + 1 + n, l);
}
以后做这种题一定不能偷懒 , 用脑子想 , 而是要用笔去写 , 把每种情况写清楚了 !!!
那样并不浪费时间 , 反而节省时间 !!
代码
#include <bits/stdc++.h>
#define For(i, l, r) for(register int i = (l), i##end = (int)(r); i <= i##end; ++i)
#define Fordown(i, r, l) for(register int i = (r), i##end = (int)(l); i >= i##end; --i)
#define Set(a, v) memset(a, v, sizeof(a))
using namespace std;
inline bool chkmin(int &a, int b) {return b < a ? a = b, 1 : 0;}
inline bool chkmax(int &a, int b) {return b > a ? a = b, 1 : 0;}
inline int read() {
int x = 0, fh = 1; char ch = getchar();
for (; !isdigit(ch); ch = getchar()) if (ch == '-') fh = -1;
for (; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + (ch ^ 48);
return x * fh;
}
void File() {
#ifdef zjp_shadow
freopen ("6432.in", "r", stdin);
freopen ("6432.out", "w", stdout);
#endif
}
const int N = 1e5 + 1e3, Mod = 998244353;
int n, k, a[N], b[N];
typedef long long ll;
ll fac[N], ifac[N];
ll fpm(ll x, ll power) {
ll res = 1; x %= Mod;
for (; power; power >>= 1, (x *= x) %= Mod)
if (power & 1) (res *= x) %= Mod;
return res;
}
ll C(int n, int m) {
if (n < 0 || m < 0 || n < m) return 0;
return fac[n] * ifac[m] % Mod * ifac[n - m] % Mod;
}
void Init(int maxn) {
fac[0] = ifac[0] = 1;
For (i, 1, maxn) fac[i] = fac[i - 1] * i % Mod;
ifac[maxn] = fpm(fac[maxn], Mod - 2);
Fordown (i, maxn - 1, 1) ifac[i] = ifac[i + 1] * (i + 1) % Mod;
}
inline int Sum(int l, int r) {
if (l > r) return 0;
return upper_bound(a + 1, a + 1 + n, r) - lower_bound(a + 1, a + 1 + n, l);
}
int main () {
File(); Init(1e5);
n = read(); k = read();
For (i, 1, n) a[i] = b[i] = read();
sort(a + 1, a + 1 + n);
For (i, 1, n) {
if (!b[i]) { printf ("%lld\n", C(n, k)); continue ; }
ll res = C(n - Sum((b[i] + 1) / 2, b[i] - 1) - 1, k);
int tot = Sum(b[i], b[i] * 2 - 1);
(res += C(n - tot, k - tot)) %= Mod;
printf ("%lld\n", res);
}
return 0;
}
LOJ #6432. 「PKUSC2018」真实排名(组合数)的更多相关文章
- Loj 6432. 「PKUSC2018」真实排名 (组合数)
题面 Loj 题解 枚举每一个点 分两种情况 翻倍or不翻倍 \(1.\)如果这个点\(i\)翻倍, 要保持排名不变,哪些必须翻倍,哪些可以翻倍? 必须翻倍: \(a[i] \leq a[x] < ...
- Loj#6432「PKUSC2018」真实排名(二分查找+组合数)
题面 Loj 题解 普通的暴力是直接枚举改或者不改,最后在判断最后对哪些点有贡献. 而这种方法是很难优化的.所以考虑在排序之后线性处理.首先先假设没有重复的元素 struct Node { int p ...
- LOJ #6432. 「PKUSC2018」真实排名
题目在这里...... 对于这道题,现场我写炸了......谁跟我说组合数O(n)的求是最快的?(~!@#¥¥%……& #include <cstdio> #include < ...
- LOJ 6432 「PKUSC2018」真实排名——水题
题目:https://loj.ac/problem/6432 如果不选自己,设自己的值是 x ,需要让 “ a<x && 2*a>=x ” 的非 x 的值不被选:如果选自己 ...
- 【LOJ】#6432. 「PKUSC2018」真实排名
题解 简单分析一下,如果这个选手成绩是0,直接输出\(\binom{n}{k}\) 如果这个选手的成绩没有被翻倍,那么找到大于等于它的数(除了它自己)有a个,翻倍后不大于它的数有b个,那么就从这\(a ...
- #6432. 「PKUSC2018」真实排名(组合数学)
题面 传送门 题解 这数据范围--这输出大小--这模数--太有迷惑性了-- 首先对于\(0\)来说,不管怎么选它们的排名都不会变,这个先特判掉 对于一个\(a_i\)来说,如果它不选,那么所有大于等于 ...
- 「PKUSC2018」真实排名(排列组合,数学)
前言 为什么随机跳题会跳到这种题目啊? Solution 我们发现可以把这个东西分情况讨论: 1.这个点没有加倍 这一段相同的可以看成一个点,然后后面的都可以. 这一段看成一个点,然后前面的不能对他造 ...
- 「PKUSC2018」真实排名(组合)
一道不错的组合数问题! 分两类讨论: 1.\(a_i\) 没有翻倍,那些 \(\geq a_i\) 和 \(a_j\times 2<a_i\) 的数就没有影响了.设 \(kth\) 为 \(a_ ...
- 「PKUSC2018」真实排名
题面 题解 因为操作为将一些数字翻倍, 所以对于一个数\(x\), 能影响它的排名的的只有满足\(2y\geq x\)或\(2x>y\)的\(y\) 将选手的成绩排序,然后考虑当前点的方案 1. ...
随机推荐
- PCB之PASTE助焊层和SOLDER阻焊层
1.PASTE为焊接层,用于SMT贴片元件的焊接,对应的图形为钢网(钢网上的小孔): 2.SOLDER为阻焊层,它代表的是绿油的涂抹区域,且为负片输出(负片输出指的是图形以外的区域为有效区域): PA ...
- Linux中2>&1使用
转:2>&1使用 一 相关知识 1)默认地,标准的输入为键盘,但是也可以来自文件或管道(pipe |).2)默认地,标准的输出为终端(terminal),但是也可以重定向到文件,管道或后 ...
- Spring Boot 2.0(七):Spring Boot 如何解决项目启动时初始化资源
在我们实际工作中,总会遇到这样需求,在项目启动的时候需要做一些初始化的操作,比如初始化线程池,提前加载好加密证书等.今天就给大家介绍一个 Spring Boot 神器,专门帮助大家解决项目启动初始化资 ...
- Mvc_前后端绑定数据json集合
ViewBag.SysModuleList =new List<SysModule>(){.....}; var data = @Html.Raw(Json.Encode(ViewBag ...
- Python零基础入门(安装步骤,验证方式, 简单操作)
本篇文章适合新人小白初步了解Python,涵盖Python的介绍.安装以及简单的基础操作. 1.Python简介 Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.它的设 ...
- Nginx的location配置规则梳理
Nginx几乎是当下绝大多数公司在用的web应用服务,熟悉Nginx的配置,对于我们日常的运维工作是至关重要的,下面就Nginx的location配置进行梳理: 1)location匹配的是nginx ...
- Dubbo原理和源码解析之“微内核+插件”机制
github新增仓库 "dubbo-read"(点此查看),集合所有<Dubbo原理和源码解析>系列文章,后续将继续补充该系列,同时将针对Dubbo所做的功能扩展也进行 ...
- github 心得体会
https://github.com/xu123/text 学习了很多知识感觉很有趣 git config :配置git git add:更新working directory中的文件至stagin ...
- 过滤器Filter的使用(以登录为例子)
使用过滤器步骤: (1)在web.xml文件中添加过滤器(以下例子是过滤多个请求) <!-- 用户登录过滤 --> <filter> <filter-name>lo ...
- CMake系列之二:入门案例-单个源文件
编写一个源码文件 如下 #include<stdio.h> #include<stdlib.h> double power(double base,int exponent) ...