dijkstral改编
题意:给你包含n个点的连通图,每个点都有一个权值。给定起点和终点。问你起点到终点的最短路条数,并且输出路径最短且权值之和最大的一条路径。
思路:1.如何根据父节点更新子节点。x,y是父子节点。如果从起点s到父节点x的最短路条数为cnt,则从起点到y的最短路条数也为cnt。如果更新某个点最短路条数的时候,发现这个点原来的最短路条数相同的话就要,再原来最短路条数的基础上再加上这次最短路的条数。
2.如何更新从起点到某个点的权值路径的权值之和:如果从起点到父节点x的权值之和为w,则从起点到y的权值之和为w加上y节点的自身的权值之和。
3.L2第一题和L2 26题有一些相同的之处,都是由父节点更新子节点。比如26题父节点的辈分如果是2则子节点的辈分就是在2+1.下面上第一题代码。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
#include<cmath>
#define inf 0x3f3f3f3f
using namespace std; int f[],ans[];//ans数组记录起点到每个点得救援队数量
int w[],a[][];
int v[],d[],fa[];//fa数组记录父亲节点
stack<int> s;
int N,M,S,D,k=; void dijkstra()
{
memset(d,0x3f,sizeof d);
memset(v,,sizeof v);
d[S]=;
f[S]=;
ans[S]=w[S];
for(int i=;i<N;i++)
{
int x,m=inf;
for(int j=;j<N;j++)
{
if(!v[j]&&d[j]<m)
{
m=d[j];
x=j;
}
}
v[x]=;
for(int y=;y<N;y++)
{
if(d[y]>d[x]+a[x][y])
{
f[y]=f[x];//最短路条数
d[y]=d[x]+a[x][y];
fa[y]=x;
ans[y]=ans[x]+w[y];
}
else if(d[y]==d[x]+a[x][y])
{
f[y]+=f[x];
if(ans[y]<ans[x]+w[y])
{
fa[y]=x;
ans[y]=ans[x]+w[y];
}
}
}
} } int main()
{
scanf("%d%d%d%d",&N,&M,&S,&D);
for(int i=;i<N;i++)
{
scanf("%d",&w[i]);
} memset(a,0x3f,sizeof a);
for(int i=;i<;i++)
fa[i]=-;
int x,y,z;
for(int i=;i<M;i++)
{
cin>>x>>y>>z;
a[x][y]=z;
a[y][x]=z;
dijkstra();
printf("%d %d\n",f[D],ans[D]);
s.push(D);
for(int i=fa[D];i!=-;i=fa[i])
{
s.push(i);
} printf("%d",s.top());
s.pop();
while(!s.empty())
{
printf(" %d",s.top());
s.pop();
} return ;
}
dijkstral改编的更多相关文章
- 【转】监听按钮除OnClick外其他事件的方法,附简易改编的UIButton类
http://lib.csdn.net/article/unity3d/38463 作者:IceFantasyLcj 大家好,我是雨中祈雨.一直以来,CSDN都是我最好的编程助手.这是我在CSDN的第 ...
- 【转】 NGUI 监听按钮除OnClick外其他事件的方法,附简易改编的UIButton类
http://blog.csdn.net/icefantasylcj/article/details/49450555 大家好,我是雨中祈雨.一直以来,CSDN都是我最好的编程助手.这是我在CSDN的 ...
- NOIP2014无线网络发射器选址改编1
问题描述 随着智能手机的日益普及,人们对无线网的需求日益增大.某城市决定对城市内的公共场所覆盖无线网. 假设该城市的布局为由严格平行的129条东西向街道和129条南北向街道所形成的网格状,并且相邻的平 ...
- APK改之理 手游修改改编安卓程序工具安装使用教程
APK改之理 手游修改改编安卓程序工具安装使用教程 --APK破解付费程序 apk改之理是pc平台上一款非常好用的apk反编译工具,他将反编译以及签名等功能集中在一起,并且拥有非常人性化的操作界面,如 ...
- C语言 · 8皇后问题改编
8皇后问题(改编) 问题描述 规则同8皇后问题,但是棋盘上每格都有一个数字,要求八皇后所在格子数字之和最大. 输入格式 一个8*8的棋盘. 输出格式 所能得到的最大数字和 样例输入 1 2 3 4 5 ...
- luogu p3371 单源最短路径(dijkstral
本来我写的对的 我就多手写了个 ios::sync_with_stdio(false); 我程序里面用了cin 还有scanf 本来想偷偷懒 我就说 我查了半天错 根本找不到的啊... 后来交了几次 ...
- 2017Facebook面试题改编“一面砖墙 ”
题目:一面砖墙 这道题改编自网上Facebook去年的一道面试题,是hihoCoder的1494题(https://hihocoder.com/problemset/problem/1494) 这道题 ...
- Atcoder Regular Contest 092 A 的改编
原题地址 题目大意 给定平面上的 $n$ 个点 $p_1, \dots, p_n$ .第 $i$ 点的坐标为 $(x_i, y_i)$ .$x_i$ 各不相同,$y_i$ 也各不相同.若两点 $p_i ...
- Cocos2d-x 3.1 一步一步地做改编
本文并不想谈论的屏幕改编或真理的概念.假设不知道cocos2d-x的,请先看这篇文章:http://www.cocoachina.com/gamedev/cocos/2014/0516/8451.ht ...
随机推荐
- cs231n(三) 误差反向传播
摘要 本节将对反向传播进行直观的理解.反向传播是利用链式法则递归计算表达式的梯度的方法.理解反向传播过程及其精妙之处,对于理解.实现.设计和调试神经网络非常关键.反向求导的核心问题是:给定函数 $f( ...
- gym101808 E
提问:我是什么品种的傻逼? 哇看到积水兴高采烈啊.然后就走上了一条不归路. 为什么不归呢,因为我这个法子就是不对的,我总是在想很多很多点围成的一块区域,然后求这一块区域的面积. 然后尝试了各种扫描方法 ...
- 阿里天池的新任务(简单)(KMP统计子串出现的次数)
阿里“天池”竞赛平台近日推出了一个新的挑战任务:对于给定的一串 DNA 碱基序列 tt,判断它在另一个根据规则生成的 DNA 碱基序列 ss 中出现了多少次. 输出格式 输出一个整数,为 tt 在 s ...
- JS 进阶知识点及常考面试题
将会学习到一些原理相关的知识,不会解释涉及到的知识点的作用及用法,如果大家对于这些内容还不怎么熟悉,推荐先去学习相关的知识点内容再来学习原理知识. 手写 call.apply 及 bind 函数 涉及 ...
- 四、XML语言学习(3)
XML编程(CURD) 1.XML解析技术概述XML解析方式分为两种:DOM方式和SAX方式DOM:Document Object Model,文档对象模型.这种方式是W3C推荐的处理XML的一种方式 ...
- jquery parents() next() prev() 找父级别标签 找同级别标签
html结构 解决方法: jquery parents() 找父级别标签 next() 同级别向下找 prev() 同级别想上找 我这里找的是一个,下面有n个的方法 $(document).read ...
- PHP(Dom操作的一些基础)
重点!! //DOM操作: // 核心思想:找到元素 操作元素// js找元素 会返回元素对象:// document.getElementById("dd");唯一确定// 返回 ...
- Python学习之旅(三十四)
Python基础知识(33):网络编程(Ⅱ) UDP编程 相对TCP,UDP则是面向无连接的协议 使用UDP协议时,不需要建立连接,只需要知道对方的IP地址和端口号,就可以直接发数据包 虽然用UDP传 ...
- Python学习之旅(八)
Python基础知识(7):数据基本类型之元组.字典 一.元组 用括号把元素括起来中间用逗号隔开.用逗号分开一些值便可创建元组 1,2,3 结果: (1, 2, 3) 空元组可以用没有包含任何内容的两 ...
- ffmpeg命令的使用
参考博客:https://www.cnblogs.com/wainiwann/p/4128154.html 但是红色网页总结的 “ffmpeg 用法” 非常全面. http://www.360doc. ...