文字描述

  与AOV-网相对应的是AOE-网(Activity on Edge)即边表示活动的网。AOE-网是一个带权的有向无环图。其中,顶点表示事件Event,弧表示活动,权表示活动持续的时间。通常,AOE-网可用来估算工程的完成时间。

  对AOE-网来说,研究的问题有两个:(1)完成整项工程至少需要多少时间?(2)哪些活动是影响工程进度的关键?  

  由于在AOE-网中有些活动可以并行地进行,所以完成工程的最短时间是从开始点到完成点的最长路径的长度(指路径上各活动持续时间之和,不是路径上弧的数目)。路径长度最长的路径叫做关键路径。

  假设开始点是v1,从v1到vi的最长路径叫事件vi的最早发生时间。这个时间决定了所有以vi为尾的弧所表示的活动的最早开始时间。用e(i)表示活动ai的最早开始时间。用l(i)表示ai的最迟开始时间,这是在不推迟整个工程完成的前提下,活动ai最迟必须开始进行的时间。两者之差l(i)-e(i)表示活动ai的时间余量。我们把l(i)==e(i)的活动叫做关键活动。

  显然,关键路径上的所有活动都是关键活动,因此提前完成非关键活动并不能加快工程的进度。

  那么如何求得各个活动的最早开始时间e(i)和最晚开始时间l(i)呢?首先应求得事件的最早发生时间ve(j)和最迟发生时间vl(j)。如果活动ai由弧<j,k>表示,其持续时间记为dut(<j,k>),则有如下关系:

  e(i) = ve(j)

  l(i) = vl(k) – dut(<j,k>)

  求ve(j)和vl(j)需分两步进行:

    (1)   从ve(0)=0开始向前递推

    

    (2)   从vl(n-1)=ve(n-1)起向后递推

    

    这两个递推公式可以利用之前的拓扑排序算法求得。

示意图

算法分析

  算法复杂度同拓扑排序算法,为O(n+e)。

代码实现

 //
// Created by lady on 18-12-29.
// #include <stdlib.h>
#include <stdio.h>
#define MAX_VERTEX_NUM 20 //最大顶点数
#define MAX_EDGE_NUM 50 //最大弧数
typedef enum {DG,DN, UDG, UDN} GraphKind; //{有向图,有向网,无向图,无向网}
typedef struct ArcNode{
int adjvex; //该弧所指向的顶点的位置
struct ArcNode *nextarc; //指向下一条弧的指针
int info; //该弧相关信息的指针
}ArcNode;
typedef struct VNode{
char data[];//顶点信息
ArcNode *firstarcIN;//第一条以该顶点为弧头的弧结点,其他顶点->该结点
ArcNode *firstarcOUT;//第一条以该顶点为弧尾的弧结点,该结点->其他顶点
}VNode, AdjList[MAX_VERTEX_NUM];
typedef struct{
AdjList vertices;
int vexnum;//图的顶点数
int arcnum;//图的弧数
int kind; //图的种类标志
}ALGraph; //根据顶点信息,返回该顶点在图中的位置坐标。
int LocateVex(ALGraph *G, char data[])
{
int i = ;
for(i=; i<G->vexnum; i++){
if(!strncmp(G->vertices[i].data, data, strlen(G->vertices[i].data))){
return i;
}
}
return -;
} //利用头插法,在弧结点链表头部,插入位置v的弧结点
int InsFirst(ArcNode *L, int v, int weight)
{
if((L==NULL) || (v<)){
return -;
}
ArcNode *n = (ArcNode *)malloc(sizeof(struct ArcNode));
n->adjvex = v;
n->nextarc = L->nextarc;
n->info = weight;
L->nextarc = n;
return ;
} //采用邻接表存储方法,创建有向网,即带权的有向图
int CreateDN(ALGraph *G)
{
printf("开始创建一个有向图,请输入顶点数,弧数:");
int i = , j = , k = ;
char v1[] = {}, v2[]={}, info[] = {};
char tmp[] = {};
G->kind = DN;
scanf("%d,%d", &G->vexnum, &G->arcnum);
for(i=; i<G->vexnum; i++){
printf("输入第%d个顶点: ", i+);
memset(G->vertices[i].data, , sizeof(G->vertices[i].data));
scanf("%s", G->vertices[i].data);
G->vertices[i].firstarcOUT = (struct ArcNode *)malloc(sizeof(struct ArcNode));
G->vertices[i].firstarcOUT->adjvex = -;
G->vertices[i].firstarcOUT->nextarc = NULL;
G->vertices[i].firstarcIN = (struct ArcNode *)malloc(sizeof(struct ArcNode));
G->vertices[i].firstarcIN->adjvex = -;
G->vertices[i].firstarcIN->nextarc = NULL;
}
for(k=; k<G->arcnum; k++)
{
printf("输入第%d条弧(顶点1, 顶点2, 权值): ", k+);
memset(tmp, , sizeof(tmp));
scanf("%s", tmp);
// sscanf(tmp, "%[^','],%s[^\\n]", v1, v2);
sscanf(tmp, "%[^','],%[^','],%s[^\\n]", v1, v2, info);
i = LocateVex(G, v1);
j = LocateVex(G, v2);
if(i< || j<){
printf("<%s,%s> is a invalid arch!\n", v1, v2);
return -;
}
InsFirst(G->vertices[i].firstarcOUT, j, atoi((const char *)info));
InsFirst(G->vertices[j].firstarcIN, i, atoi((const char *)info));
}
return ;
} void printG(ALGraph *G)
{
printf("\n");
if(G->kind == DG){
printf("类型:有向图;顶点数 %d, 弧数 %d\n", G->vexnum, G->arcnum);
}else if(G->kind == DN){
printf("类型:有向网;顶点数 %d, 弧数 %d\n", G->vexnum, G->arcnum);
}else if(G->kind == UDG){
printf("类型:无向图;顶点数 %d, 弧数 %d\n", G->vexnum, G->arcnum);
}else if(G->kind == UDN){
printf("类型:无向网;顶点数 %d, 弧数 %d\n", G->vexnum, G->arcnum);
}
int i = ;
ArcNode *p = NULL;
printf("邻接表:\n");
for(i=; i<G->vexnum; i++){
printf("(%d,%s)\t", i,G->vertices[i].data);
p = G->vertices[i].firstarcOUT;
while(p){
if(p->adjvex >= )
printf("(%d,%s) %d\t", p->adjvex, G->vertices[p->adjvex].data, p->info);
p = p->nextarc;
}
printf("\n");
}
printf("逆邻接表:\n");
for(i=; i<G->vexnum; i++){
printf("(%d,%s)\t", i,G->vertices[i].data);
p = G->vertices[i].firstarcIN;
while(p){
if(p->adjvex >= )
printf("(%d,%s) %d\t", p->adjvex, G->vertices[p->adjvex].data, p->info);
p = p->nextarc;
}
printf("\n");
}
return;
} #define STACK_INIT_SIZE 20 //栈的初始分配量大小
#define STACK_INCREMENT 5 //栈容量不足时需新增的容量大小
typedef struct {
int *base; //指向栈底指针
int *top; //指向栈顶指针
int stacksize; //栈的当前容量大小
}SqStack;
int InitStack(SqStack *s); //初始化一个栈
int StackEmpty(SqStack *s); //判断栈是否为空
int Push(SqStack *S, int *e); //入栈函数
int Pop(SqStack *S, int *e); //出栈函数 //算法各个顶点的入度,并将结果存放在indegree数组中
int FindInDegree(ALGraph *G, int indegree[])
{
printf("\n对各个顶点求入度...\n");
int i = ;
ArcNode *p = NULL;
for(i=; i<G->vexnum; i++) {
p = G->vertices[i].firstarcIN;
while (p) {
if (p->adjvex >= ) {
indegree[i] += ;
}
p = p->nextarc;
}
}
for(i=; i<G->vexnum; i++){
printf("(%d,%s)的入度为%d\n", i, G->vertices[i].data, indegree[i]);
}
return ;
}
int ve[MAX_EDGE_NUM] = {};
int vl[MAX_EDGE_NUM] = {}; int ToplogicalSort(ALGraph *G, SqStack *T)
{
int i = ;
int j = ;
int k = ;
int count = ;
int indegree[MAX_VERTEX_NUM] = {};
ArcNode *p = NULL;
SqStack S;
//求各个顶点的入度
FindInDegree(G, indegree);
//初始化栈S,保存零入度顶点栈
InitStack(&S);
//将入度为0的顶点入栈S.
for(i=; i<G->vexnum; i++){
if(!indegree[i]) {
Push(&S, &i);
}
}
//初始化栈T,为拓扑序列顶点栈
InitStack(T);
//初始化
for(i=; i<G->vexnum; i++){
ve[i] = ;
}
printf("\n进行拓扑排序:");
while(StackEmpty(&S)){
Pop(&S, &j);
//j号顶点入T栈并计数
Push(T, &j);
++count;
printf("(%d,%s)\t", j, G->vertices[j].data);
//对j号顶点的每个邻接点的入度减1
for(p=G->vertices[j].firstarcOUT; p; p=p->nextarc){
k = p->adjvex;
if(k<){
continue;
}
//若入度为0,则入栈S
if(!(--indegree[k])){
Push(&S, &k);
}
if(ve[j]+p->info > ve[k])
ve[k] = ve[j]+p->info;
}
}
printf("\n");
if(count<G->vexnum){
//该有向网有环
return -;
}else{
return ;
}
} //G为有向图, 输出G的各项关键活动
int CriticalPath(ALGraph *G)
{
SqStack T;
if(ToplogicalSort(G, &T)<){
return -;
}
int i = ;
int j = ;
int k = ;
int dut = ;
ArcNode *p = NULL;
//初始化顶点时间的最迟发生时间
for(i=; i<G->vexnum; i++){
vl[i] = ve[i];
}
//按照拓扑逆序求各顶点的vl值
while(StackEmpty(&T)){
Pop(&T, &j); for(p=G->vertices[j].firstarcOUT; p; p=p->nextarc){
k = p->adjvex;
if(k<)
continue;
dut = p->info; //dut(<j,k>)
if(vl[k]-dut < vl[j])
vl[j] = vl[k] - dut;
} for(p=G->vertices[j].firstarcIN; p; p=p->nextarc) {
k = p->adjvex;
if (k < )
continue;
dut = p->info; //dut<k,j> if (vl[j] - dut > vl[k]) {
vl[k] = vl[j] - dut;
}
}
}
printf("\n输出各个顶点的最早发生时间ve和最晚发生时间vl\n");
for(i=; i<G->vexnum; i++){
printf("ve(%d,%s)=%d\t", i, G->vertices[i].data, ve[i]);
printf("vl(%d,%s)=%d\n", i, G->vertices[i].data, vl[i]);
}
int ee = ;
int el = ;
char tag = ;
printf("\n输出各活动的最早发生时间ee和最晚发生时间el, *表示该活动为关键路径\n");
for(j=; j<G->vexnum; j++){
for(p=G->vertices[j].firstarcOUT; p; p=p->nextarc){
k = p->adjvex;
if(k<){
continue;
}
dut = p->info;
ee = ve[j];
el = vl[k]-dut;
tag = (ee==el)?'*':' ';
//输出关键活动
printf("(%d,%s)->(%d,%s), weight:%d, ee=%d, el=%d, tag=%c\n", j, G->vertices[j].data, k, G->vertices[k].data, dut, ee, el, tag);
}
}
return ;
} int main(int argc, char *argv[])
{
ALGraph G;
//创建有向图
if(CreateDN(&G)<){
printf("创建有向图时出错!\n");
return -;
}
//打印图
printG(&G);
//求关键路径
CriticalPath(&G);
return ;
} int InitStack(SqStack *S){
S->base = (int *) malloc(STACK_INIT_SIZE * sizeof(int));
if(!S->base){
return -;
}
S->top = S->base;
S->stacksize = STACK_INIT_SIZE;
return ;
} int StackEmpty(SqStack *s){
if(s->base == s->top){
return ;
}else{
return -;
}
} int Push(SqStack *s, int *e){
if((s->top-s->base) >= s->stacksize){
s->base = (int*)realloc(s->base, (s->stacksize+STACK_INCREMENT)*(sizeof(int)));
if(!s->base){
return -;
}
s->top = s->base + s->stacksize;
s->stacksize += STACK_INCREMENT;
}
if(e == NULL){
return -;
}else{
*s->top = *e;
}
s->top += ;
return ;
} int Pop(SqStack *s, int *e)
{
if(s->top == s->base) {
return -;
}else{
s->top -=;
*e = *s->top;
return ;
}
}

求有向无环网的关键路径

代码运行

/home/lady/CLionProjects/untitled/cmake-build-debug/untitled
开始创建一个有向图,请输入顶点数,弧数:9,11
输入第1个顶点: V1
输入第2个顶点: V2
输入第3个顶点: V3
输入第4个顶点: V4
输入第5个顶点: V5
输入第6个顶点: V6
输入第7个顶点: V7
输入第8个顶点: V8
输入第9个顶点: V9
输入第1条弧(顶点1, 顶点2, 权值): V1,V2,6
输入第2条弧(顶点1, 顶点2, 权值): V1,V3,4
输入第3条弧(顶点1, 顶点2, 权值): V1,V4,5
输入第4条弧(顶点1, 顶点2, 权值): V2,V5,1
输入第5条弧(顶点1, 顶点2, 权值): V3,V5,1
输入第6条弧(顶点1, 顶点2, 权值): V4,V6,2
输入第7条弧(顶点1, 顶点2, 权值): V5,V7,9
输入第8条弧(顶点1, 顶点2, 权值): V5,V8,7
输入第9条弧(顶点1, 顶点2, 权值): V6,V8,4
输入第10条弧(顶点1, 顶点2, 权值): V7,V9,2
输入第11条弧(顶点1, 顶点2, 权值): V8,V9,4 类型:有向网;顶点数 9, 弧数 11
邻接表:
(0,V1)    (3,V4) 5    (2,V3) 4    (1,V2) 6    
(1,V2)    (4,V5) 1    
(2,V3)    (4,V5) 1    
(3,V4)    (5,V6) 2    
(4,V5)    (7,V8) 7    (6,V7) 9    
(5,V6)    (7,V8) 4    
(6,V7)    (8,V9) 2    
(7,V8)    (8,V9) 4    
(8,V9)    
逆邻接表:
(0,V1)    
(1,V2)    (0,V1) 6    
(2,V3)    (0,V1) 4    
(3,V4)    (0,V1) 5    
(4,V5)    (2,V3) 1    (1,V2) 1    
(5,V6)    (3,V4) 2    
(6,V7)    (4,V5) 9    
(7,V8)    (5,V6) 4    (4,V5) 7    
(8,V9)    (7,V8) 4    (6,V7) 2     对各个顶点求入度...
(0,V1)的入度为0
(1,V2)的入度为1
(2,V3)的入度为1
(3,V4)的入度为1
(4,V5)的入度为2
(5,V6)的入度为1
(6,V7)的入度为1
(7,V8)的入度为2
(8,V9)的入度为2 进行拓扑排序:(0,V1)    (1,V2)    (2,V3)    (4,V5)    (6,V7)    (3,V4)    (5,V6)    (7,V8)    (8,V9)     输出各个顶点的最早发生时间ve和最晚发生时间vl
ve(0,V1)=0    vl(0,V1)=0
ve(1,V2)=6    vl(1,V2)=6
ve(2,V3)=4    vl(2,V3)=6
ve(3,V4)=5    vl(3,V4)=8
ve(4,V5)=7    vl(4,V5)=7
ve(5,V6)=7    vl(5,V6)=10
ve(6,V7)=16    vl(6,V7)=16
ve(7,V8)=14    vl(7,V8)=14
ve(8,V9)=18    vl(8,V9)=18 输出各活动的最早发生时间ee和最晚发生时间el, *表示该活动为关键路径
(0,V1)->(3,V4), weight:5, ee=0, el=3, tag=
(0,V1)->(2,V3), weight:4, ee=0, el=2, tag=
(0,V1)->(1,V2), weight:6, ee=0, el=0, tag=*
(1,V2)->(4,V5), weight:1, ee=6, el=6, tag=*
(2,V3)->(4,V5), weight:1, ee=4, el=6, tag=
(3,V4)->(5,V6), weight:2, ee=5, el=8, tag=
(4,V5)->(7,V8), weight:7, ee=7, el=7, tag=*
(4,V5)->(6,V7), weight:9, ee=7, el=7, tag=*
(5,V6)->(7,V8), weight:4, ee=7, el=10, tag=
(6,V7)->(8,V9), weight:2, ee=16, el=16, tag=*
(7,V8)->(8,V9), weight:4, ee=14, el=14, tag=* Process finished with exit code 0
/home/lady/CLionProjects/untitled/cmake-build-debug/untitled
开始创建一个有向图,请输入顶点数,弧数:6,8
输入第1个顶点: V1
输入第2个顶点: V2
输入第3个顶点: V3
输入第4个顶点: V4
输入第5个顶点: V5
输入第6个顶点: V6
输入第1条弧(顶点1, 顶点2, 权值): V1,V2,3
输入第2条弧(顶点1, 顶点2, 权值): V1,V3,2
输入第3条弧(顶点1, 顶点2, 权值): V2,V4,2
输入第4条弧(顶点1, 顶点2, 权值): V2,V5,3
输入第5条弧(顶点1, 顶点2, 权值): V3,V4,4
输入第6条弧(顶点1, 顶点2, 权值): V3,V6,3
输入第7条弧(顶点1, 顶点2, 权值): V4,V6,2
输入第8条弧(顶点1, 顶点2, 权值): V5,V6,1 类型:有向网;顶点数 6, 弧数 8
邻接表:
(0,V1)    (2,V3) 2    (1,V2) 3    
(1,V2)    (4,V5) 3    (3,V4) 2    
(2,V3)    (5,V6) 3    (3,V4) 4    
(3,V4)    (5,V6) 2    
(4,V5)    (5,V6) 1    
(5,V6)    
逆邻接表:
(0,V1)    
(1,V2)    (0,V1) 3    
(2,V3)    (0,V1) 2    
(3,V4)    (2,V3) 4    (1,V2) 2    
(4,V5)    (1,V2) 3    
(5,V6)    (4,V5) 1    (3,V4) 2    (2,V3) 3     对各个顶点求入度...
(0,V1)的入度为0
(1,V2)的入度为1
(2,V3)的入度为1
(3,V4)的入度为2
(4,V5)的入度为1
(5,V6)的入度为3 进行拓扑排序:(0,V1)    (1,V2)    (4,V5)    (2,V3)    (3,V4)    (5,V6)     输出各个顶点的最早发生时间ve和最晚发生时间vl
ve(0,V1)=0    vl(0,V1)=0
ve(1,V2)=3    vl(1,V2)=4
ve(2,V3)=2    vl(2,V3)=2
ve(3,V4)=6    vl(3,V4)=6
ve(4,V5)=6    vl(4,V5)=7
ve(5,V6)=8    vl(5,V6)=8 输出各活动的最早发生时间ee和最晚发生时间el, *表示该活动为关键路径
(0,V1)->(2,V3), weight:2, ee=0, el=0, tag=*
(0,V1)->(1,V2), weight:3, ee=0, el=1, tag=
(1,V2)->(4,V5), weight:3, ee=3, el=4, tag=
(1,V2)->(3,V4), weight:2, ee=3, el=4, tag=
(2,V3)->(5,V6), weight:3, ee=2, el=5, tag=
(2,V3)->(3,V4), weight:4, ee=2, el=2, tag=*
(3,V4)->(5,V6), weight:2, ee=6, el=6, tag=*
(4,V5)->(5,V6), weight:1, ee=6, el=7, tag= Process finished with exit code 0

图->有向无环图->求关键路径的更多相关文章

  1. 图->有向无环图->拓扑排序

    文字描述 关于有向无环图的基础定义: 一个无环的有向图称为有向无环图,简称DAG图(directed acycline graph).DAG图是一类较有向树更一般的特殊有向图. 举个例子说明有向无环图 ...

  2. 有向无环图的应用—AOV网 和 拓扑排序

    有向无环图:无环的有向图,简称 DAG (Directed Acycline Graph) 图. 一个有向图的生成树是一个有向树,一个非连通有向图的若干强连通分量生成若干有向树,这些有向数形成生成森林 ...

  3. 【拓扑】【宽搜】CSU 1084 有向无环图 (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1804 题目大意: 一个有向无环图(DAG),有N个点M条有向边(N,M<=105 ...

  4. Expm 4_2 有向无环图中的最短路径问题

    [问题描述] 建立一个从源点S到终点E的有向无环图,设计一个动态规划算法求出从S到E的最短路径值,并输出相应的最短路径. 解: package org.xiu68.exp.exp4; import j ...

  5. 网络流24题 第三题 - CodeVS1904 洛谷2764 最小路径覆盖问题 有向无环图最小路径覆盖 最大流 二分图匹配 匈牙利算法

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - CodeVS1904 题目传送门 - 洛谷2764 题意概括 给出一个有向无环图,现在请你求一些路径,这些路径 ...

  6. 某种带权有向无环图(graph)的所有路径的求法

    // 讨论QQ群:135202158 最近做某个东西,最后用图实现了,这里总结一下算法. 假设有以下带权有向无环图(连通或非连通,我这里用的是非连通的): 每个节点(node)可能与其他节点有向地相连 ...

  7. 2016 湖南省省赛B题《有向无环图》

    题目链接[https://vjudge.net/problem/CSU-1804] 题意: 给出一个有向无环图,然后让你算下面的结果,count(i,j)表示i->j之间的路径条数. 题解: 根 ...

  8. UVA_1025 a Spy in the Metro 有向无环图的动态规划问题

    应当认为,有向无环图上的动态规划问题是动态规划的基本模型之一,对于某个模型,如果可以转换为某一有向无环图的最长.最短路径问题,则可以套用动态规划若干方法解决. 原题参见刘汝佳紫薯267页. 在这个题目 ...

  9. HDU 3249 Test for job (有向无环图上的最长路,DP)

     解题思路: 求有向无环图上的最长路.简单的动态规划 #include <iostream> #include <cstring> #include <cstdlib ...

随机推荐

  1. (原)Max Area of Island(即连通域标记)

    转载请注明出处: https://www.cnblogs.com/darkknightzh/p/10493114.html 1. 问题 Given a non-empty 2D array grid ...

  2. MySQL技术内幕读书笔记(七)——锁

    锁 ​ 锁是数据库系统区分与文件系统的一个关键特性.为了保证数据一致性,必须有锁的介入.数据库系统使用锁是为了支持对共享资源进行并发访问,提供数据的完整性和一致性. lock与latch ​ 使用命令 ...

  3. Jquery Post提交时Content-Type的不同取值详解

    四种常见的 POST 提交数据方式 我们知道,HTTP 协议是以 ASCII 码传输,建立在 TCP/IP 协议之上的应用层规范.规范把 HTTP 请求分为三个部分:状态行.请求头.消息主体.类似于下 ...

  4. Python读取本地文档内容并发送邮件

    当需要将本地某个路径下的文档内容读取后并作为邮件正文发送的时候可以参考该文,使用到的模块包括smtplib,email. #! /usr/bin/env python3 # -*- coding:ut ...

  5. c++中的var_dump

    var_dump 在PHP中可以使用var_dump来输出变量,而且输出的内容很详细 用习惯后,再回来用c++的cout,各种不习惯,于是在github上找了一下,果然有类似的,而且是重载了 < ...

  6. 如何知道局域网内哪些ip被占用----工具法Free IP Scanner

    在局域网中,尤其是在工作室和公司中需要修改IP地址才能上网,通常我们在设置完ip地址后会提示[该ip地址已被占用],又得回头去修改ip地址.本篇经验就介绍一款很好用的免费软件——Free IP Sca ...

  7. Linux系统时间同步方法小结

    在Windwos中,系统时间的设置很简单,界面操作,通俗易懂,而且设置后,重启,关机都没关系.系统时间会自动保存在BIOS时钟里面,启动计算机的时候,系统会自动在BIOS里面取硬件时间,以保证时间的不 ...

  8. oracle 优化or 更换in、exists、union all几个字眼

    oracle 优化or 更换in.exists.union几个字眼.测试没有问题! 根据实际情况选择相应的语句是.假设指数,or全表扫描,in 和not in 应慎用.否则会导致全表扫描.  sele ...

  9. 安装svn客户端后,代码不能提交

    转载:https://jingyan.baidu.com/article/e8cdb32b3312f637052badde.html

  10. JNDI数据源的配置

    一.数据源的由来 在Java开发中,使用JDBC操作数据库的四个步骤如下:   ①加载数据库驱动程序(Class.forName("数据库驱动类");)   ②连接数据库(Conn ...