sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

 

 

# -*- coding: utf-8 -*-
'''
python入门/爬虫/人工智能/机器学习/自然语言/数据统计分析视频教程网址
https://pythoner.taobao.com/ https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression
Multiple Regression
- Shows how to calculate the best fit to a plane in 3D, and how to find the
corresponding statistical parameters.
- Demonstrates how to make a 3d plot.
- Example of multiscatterplot, for visualizing correlations in three- to
six-dimensional datasets.
'''
# Import standard packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns # additional packages
import sys
import os
sys.path.append(os.path.join('..', '..', 'Utilities')) try:
# Import formatting commands if directory "Utilities" is available
from ISP_mystyle import showData except ImportError:
# Ensure correct performance otherwise
def showData(*options):
plt.show()
return # additional packages ...
# ... for the 3d plot ...
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # ... and for the statistic
from statsmodels.formula.api import ols def generateData():
''' Generate and show the data: a plane in 3D '''
#随机产生101个数据,取值范围从(-5到5)
x = np.linspace(-5,5,101)
(X,Y) = np.meshgrid(x,x)
# To get reproducable values, I provide a seed value
np.random.seed(987654321)
#np.random.randn产生随机的正太分布数,np.shape(X)表示X的size(101,101)
#np.random.randn(np.shape(X)[0], np.shape(X)[1])表示产生(101,101)个随机数
Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1]) # 绘图
#Set the color
myCmap = cm.GnBu_r
# If you want a colormap from seaborn use:
#from matplotlib.colors import ListedColormap
#myCmap = ListedColormap(sns.color_palette("Blues", 20)) # Plot the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2,
linewidth=0, antialiased=False)
ax.view_init(20,-120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fig.colorbar(surf, shrink=0.6) outFile = '3dSurface.png'
showData(outFile)
#X.flatten()把多维数据展开,弄成一维数据
return (X.flatten(),Y.flatten(),Z.flatten()) def regressionModel(X,Y,Z):
'''Multilinear regression model, calculating fit, P-values, confidence intervals etc.''' # Convert the data into a Pandas DataFrame
df = pd.DataFrame({'x':X, 'y':Y, 'z':Z}) # --- >>> START stats <<< ---
# Fit the model
model = ols("z ~ x + y", df).fit()
# Print the summary
print((model.summary()))
# --- >>> STOP stats <<< ---
return model._results.params # should be array([-4.99754526, 3.00250049, -0.50514907]) #用numpy的线性回归模型,和上面regressionModel函数计算结果一致
def linearModel(X,Y,Z):
'''Just fit the plane, using the tools from numpy''' # --- >>> START stats <<< ---
M = np.vstack((np.ones(len(X)), X, Y)).T
bestfit = np.linalg.lstsq(M,Z)
# --- >>> STOP stats <<< ---
print(('Best fit plane:', bestfit))
return bestfit if __name__ == '__main__':
(X,Y,Z) = generateData()
regressionModel(X,Y,Z)
linearModel(X,Y,Z)

  

 

 

python风控评分卡建模和风控常识(博客主亲自录制视频教程)

how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters的更多相关文章

  1. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  2. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  3. kaggle入门项目:Titanic存亡预测(四)模型拟合

    原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...

  4. Course Machine Learning Note

    Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...

  5. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  6. AI-IBM-cognitive class --Liner Regression

    Liner Regression import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy ...

  7. OpenCASCADE PCurve of Topological Face

    OpenCASCADE PCurve of Topological Face eryar@163.com Abstract. OpenCASCADE provides a class BRepBuil ...

  8. The Model Complexity Myth

    The Model Complexity Myth (or, Yes You Can Fit Models With More Parameters Than Data Points) An oft- ...

  9. 中国澳门sinox很多平台CAD制图、PCB电路板、IC我知道了、HDL硬件描述语言叙述、电路仿真和设计软件,元素分析表

    中国澳门sinox很多平台CAD制图.PCB电路板.IC我知道了.HDL硬件描述语言叙述.电路仿真和设计软件,元素分析表,可打开眼世界. 最近的研究sinox执行windows版protel,powe ...

随机推荐

  1. Linux内核分析——进程的描述和进程的创建

    进程的描述和进程的创建 一. 进程的描述 (一)进程控制块PCB——task_struct 1.操作系统的三大管理功能包括: (1)进程管理 (2)内存管理 (3)文件系统 2.PCB task_st ...

  2. SRS用例

    团队项目:超市管理系统     作者:王琨  个人博客地址:http://www.cnblogs.com/wangkun123 一. 用例视图概述 一般的超市商品管理系统,主要由五大模块组成,即商品信 ...

  3. PHP预防跨站脚本(XSS)攻击且不影响html代码显示效果

    什么是XSS 跨站脚本攻击(Cross Site Scripting),为不和层叠样式表(Cascading Style Sheets, CSS)的缩写混淆,故将跨站脚本攻击缩写为XSS.恶意攻击者往 ...

  4. Jmeter While Controller 使用${__jexl2(,)}

    1. String [] str ={"1","2","3"}; vars.putObject("strArray",s ...

  5. 面象对象设计原则之二:开放封闭原则(Open-Closed Principle, OCP)

    开闭原则是面向对象的可复用设计的第一块基石,它是最重要的面向对象设计原则.开闭原则由Bertrand  Meyer于1988年提出,其定义如下: 开闭原则(Open-Closed Principle, ...

  6. 记Git报错-refusing to merge unrelated histories

    记Git报错-refusing to merge unrelated histories   系统:win7 git版本: 2.16.2.windows.1 问题 1.本地初始化了git仓库,放了一些 ...

  7. C++的内存分区

    C++的内存划分为栈区.堆区.全局区/静态区.字符串常量和代码区. 栈区 由系统进行内存的管理. 主要存放函数的参数以及局部变量.在函数完成执行,系统自行释放栈区内存,不需要用户管理.整个程序的栈区的 ...

  8. React 支持JS

    <!DOCTYPE html><html><head lang="en"> <meta charset="UTF-8" ...

  9. OneZero产品视频

    产品视频地址:http://v.youku.com/v_show/id_XMTU1MDMwOTk2OA==.html

  10. Linux基础学习(3)--初学注意

    第三章——初学注意 一.学习Linux的注意事项 1.Linux严格区分大小写 2.Linux中所有内容以文件形式保存,包括硬件: (1)硬盘文件是/dev/sd[a-p] (2)光盘文件是/dev/ ...