sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程)

https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share

 

 

# -*- coding: utf-8 -*-
'''
python入门/爬虫/人工智能/机器学习/自然语言/数据统计分析视频教程网址
https://pythoner.taobao.com/ https://github.com/thomas-haslwanter/statsintro_python/tree/master/ISP/Code_Quantlets/12_Multivariate/multipleRegression
Multiple Regression
- Shows how to calculate the best fit to a plane in 3D, and how to find the
corresponding statistical parameters.
- Demonstrates how to make a 3d plot.
- Example of multiscatterplot, for visualizing correlations in three- to
six-dimensional datasets.
'''
# Import standard packages
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns # additional packages
import sys
import os
sys.path.append(os.path.join('..', '..', 'Utilities')) try:
# Import formatting commands if directory "Utilities" is available
from ISP_mystyle import showData except ImportError:
# Ensure correct performance otherwise
def showData(*options):
plt.show()
return # additional packages ...
# ... for the 3d plot ...
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm # ... and for the statistic
from statsmodels.formula.api import ols def generateData():
''' Generate and show the data: a plane in 3D '''
#随机产生101个数据,取值范围从(-5到5)
x = np.linspace(-5,5,101)
(X,Y) = np.meshgrid(x,x)
# To get reproducable values, I provide a seed value
np.random.seed(987654321)
#np.random.randn产生随机的正太分布数,np.shape(X)表示X的size(101,101)
#np.random.randn(np.shape(X)[0], np.shape(X)[1])表示产生(101,101)个随机数
Z = -5 + 3*X-0.5*Y+np.random.randn(np.shape(X)[0], np.shape(X)[1]) # 绘图
#Set the color
myCmap = cm.GnBu_r
# If you want a colormap from seaborn use:
#from matplotlib.colors import ListedColormap
#myCmap = ListedColormap(sns.color_palette("Blues", 20)) # Plot the figure
fig = plt.figure()
ax = fig.gca(projection='3d')
surf = ax.plot_surface(X,Y,Z, cmap=myCmap, rstride=2, cstride=2,
linewidth=0, antialiased=False)
ax.view_init(20,-120)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
fig.colorbar(surf, shrink=0.6) outFile = '3dSurface.png'
showData(outFile)
#X.flatten()把多维数据展开,弄成一维数据
return (X.flatten(),Y.flatten(),Z.flatten()) def regressionModel(X,Y,Z):
'''Multilinear regression model, calculating fit, P-values, confidence intervals etc.''' # Convert the data into a Pandas DataFrame
df = pd.DataFrame({'x':X, 'y':Y, 'z':Z}) # --- >>> START stats <<< ---
# Fit the model
model = ols("z ~ x + y", df).fit()
# Print the summary
print((model.summary()))
# --- >>> STOP stats <<< ---
return model._results.params # should be array([-4.99754526, 3.00250049, -0.50514907]) #用numpy的线性回归模型,和上面regressionModel函数计算结果一致
def linearModel(X,Y,Z):
'''Just fit the plane, using the tools from numpy''' # --- >>> START stats <<< ---
M = np.vstack((np.ones(len(X)), X, Y)).T
bestfit = np.linalg.lstsq(M,Z)
# --- >>> STOP stats <<< ---
print(('Best fit plane:', bestfit))
return bestfit if __name__ == '__main__':
(X,Y,Z) = generateData()
regressionModel(X,Y,Z)
linearModel(X,Y,Z)

  

 

 

python风控评分卡建模和风控常识(博客主亲自录制视频教程)

how to calculate the best fit to a plane in 3D, and how to find the corresponding statistical parameters的更多相关文章

  1. (转)Markov Chain Monte Carlo

    Nice R Code Punning code better since 2013 RSS Blog Archives Guides Modules About Markov Chain Monte ...

  2. What is an eigenvector of a covariance matrix?

    What is an eigenvector of a covariance matrix? One of the most intuitive explanations of eigenvector ...

  3. kaggle入门项目:Titanic存亡预测(四)模型拟合

    原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accu ...

  4. Course Machine Learning Note

    Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...

  5. [C2P3] Andrew Ng - Machine Learning

    ##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...

  6. AI-IBM-cognitive class --Liner Regression

    Liner Regression import matplotlib.pyplot as plt import pandas as pd import pylab as pl import numpy ...

  7. OpenCASCADE PCurve of Topological Face

    OpenCASCADE PCurve of Topological Face eryar@163.com Abstract. OpenCASCADE provides a class BRepBuil ...

  8. The Model Complexity Myth

    The Model Complexity Myth (or, Yes You Can Fit Models With More Parameters Than Data Points) An oft- ...

  9. 中国澳门sinox很多平台CAD制图、PCB电路板、IC我知道了、HDL硬件描述语言叙述、电路仿真和设计软件,元素分析表

    中国澳门sinox很多平台CAD制图.PCB电路板.IC我知道了.HDL硬件描述语言叙述.电路仿真和设计软件,元素分析表,可打开眼世界. 最近的研究sinox执行windows版protel,powe ...

随机推荐

  1. linux内核分析实践二学习笔记

    Linux实践二--内核模块的编译 标签(空格分隔): 20135328陈都 理解内核的作用 Linux内核[kernel]是整个操作系统的最底层,它负责整个硬件的驱动,以及提供各种系统所需的核心功能 ...

  2. Android动画总结

    本文总结常用属性方法等,详细学习可使用如下郭霖大神文章: Android属性动画完全解析(上),初识属性动画的基本用法 Android属性动画完全解析(中),ValueAnimator和ObjectA ...

  3. Tools (StExBar vs Cmder)which can switch to command line window on context menu in windows OS

    https://tools.stefankueng.com/StExBar.html https://github.com/cmderdev/cmder

  4. Fixed the bug:while running alert/confirm in javascript the chrome freezes

    显示高级设置... 系统  -> 使用硬件加速模式(如果可用) 操作系统如果不支持硬件加速,却启动此项,就悲催了.小伙伴们可别瞎点了,太吃亏. 现象alert/confirm一执行,chrome ...

  5. HP 4411s Install Red Hat Enterprise Linux 5.8) Wireless Driver

    pick up from http://blog.163.com/wangkangming2008%40126/blog/static/78277928201131994053617/ # cp iw ...

  6. idHTTP 向网站发送json格式数据

    idHTTP 向网站发送json格式数据 var rbody:tstringstream; begin rbody:=tstringstream.Create('{"name":& ...

  7. Golang的位运算操作符的使用

    & 位运算 AND | 位运算 OR ^ 位运算 XOR &^ 位清空 (AND NOT) << 左移 >> 右移 感觉位运算操作符虽然在平时用得并不多,但是在 ...

  8. python对redis的常用操作 上 (对列表、字符串、散列结构操作)

    这里的一切讨论均基于python的redis-py库. 安装使用: pip install redis 然后去获取一个redis客户端: redis_conn = redis.Redis(host=R ...

  9. linux 单引号,双引号,反引号的小总结。

    还是老惯例说说事情的起因,由于最开始对linux下面的各种引号并不是特别敏感,导致有一天我在添加数据库字段的时候出现的错误,当时出现错误的原因是我在最外层使用了单引号进行包裹,然后一句话里面需要转意的 ...

  10. calico实现docker容器内部的网络链接

    calico官网 https://www.projectcalico.org// calico介绍 http://www.sdnlab.com/17161.html calico网络 环境 系统   ...