题目描述

化学家吉丽想要配置一种神奇的药水来拯救世界。
吉丽有n种不同的液体物质,和n个药瓶(均从1到n编号)。初始时,第i个瓶内装着g[i]克的第i种物质。吉丽需要执行一定的步骤来配置药水,第i个步骤是将第a[i]个瓶子内的所有液体倒入第b[i]个瓶子,此后第a[i]个瓶子不会再被用到。瓶子的容量可以视作是无限的。
吉丽知道某几对液体物质在一起时会发生反应产生沉淀,具体反应是1克c[i]物质和1克d[i]物质生成2克沉淀,一直进行直到某一反应物耗尽。生成的沉淀不会和任何物质反应。当有多于一对可以发生反应的物质在一起时,吉丽知道它们的反应顺序。每次倾倒完后,吉丽会等到反应结束后再执行下一步骤。
吉丽想知道配置过程中总共产生多少沉淀。

输入

第一行三个整数n,m,k(0<=m<n<=200000,0<=k<=500000),分别表示药瓶的个数(即物质的种数),操作步数,可以发生的反应数量。
第二行有n个整数g[1],g[2],…,g[n](1<=g[i]<=10^9),表示初始时每个瓶内物质的质量。
接下来m行,每行两个整数a[i],b[i](1<=a[i],b[i]<=n,a[i]≠b[i]),表示第i个步骤。保证a[i]在以后的步骤中不再出现。
接下来k行,每行是一对可以发生反应的物质c[i],d[i](1<=c[i],d[i]<=n,c[i]≠d[i]),按照反应的优先顺序给出。同一个反应不会重复出现。

输出

样例输入

3 2 1
2 3 4
1 2
3 2
2 3

样例输出

6
 
我们将每瓶药看成一个节点,对于一个操作合并x,y两瓶药就再新建一个节点代表这个操作,左右子节点分别是x,y两瓶药所在子树的根节点。
这样像kruskal重构树一样建出一棵二叉树,也叫并查集重构树。
可以发现对于每一对反应的两瓶药x,y,都是在它们在并查集重构树上的LCA处那个操作时发生反应的。
我们以每个反应的LCA深度为第一关键字,优先度为第二关键字排序,然后模拟一下即可。

#include<set>
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<vector>
#include<bitset>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
int n,m,k;
int g[200010];
int fa[400010];
int vis[400010];
ll ans;
int f[400010][20];
int d[400010];
int cnt;
int tot;
int ls[400010];
int rs[400010];
struct miku
{
int dep;
int pos;
int x,y;
}a[500010];
int x,y;
int find(int x)
{
if(fa[x]==x)
{
return x;
}
return fa[x]=find(fa[x]);
}
bool cmp(miku a,miku b)
{
if(a.dep!=b.dep)
{
return a.dep>b.dep;
}
return a.pos<b.pos;
}
void dfs(int x)
{
d[x]=d[f[x][0]]+1;
for(int i=1;i<=18;i++)
{
f[x][i]=f[f[x][i-1]][i-1];
}
if(ls[x])
{
dfs(ls[x]);
}
if(rs[x])
{
dfs(rs[x]);
}
}
int lca(int x,int y)
{
if(d[x]<d[y])
{
swap(x,y);
}
int dep=d[x]-d[y];
for(int i=0;i<=18;i++)
{
if((dep&(1<<i)))
{
x=f[x][i];
}
}
if(x==y)
{
return x;
}
for(int i=18;i>=0;i--)
{
if(f[x][i]!=f[y][i])
{
x=f[x][i];
y=f[y][i];
}
}
return f[x][0];
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
for(int i=1;i<=n;i++)
{
scanf("%d",&g[i]);
}
for(int i=1;i<=2*n;i++)
{
fa[i]=i;
}
cnt=n;
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
int fx=find(x);
int fy=find(y);
cnt++;
f[fx][0]=cnt;
f[fy][0]=cnt;
fa[fx]=cnt;
fa[fy]=cnt;
ls[cnt]=fx;
rs[cnt]=fy;
}
for(int i=1;i<=n;i++)
{
int rt=find(i);
if(!vis[rt])
{
vis[rt]=1;
dfs(rt);
}
}
for(int i=1;i<=k;i++)
{
scanf("%d%d",&x,&y);
if(find(x)==find(y))
{
a[++tot].dep=d[lca(x,y)];
a[tot].pos=i;
a[tot].x=x;
a[tot].y=y;
}
}
sort(a+1,a+1+tot,cmp);
for(int i=1;i<=tot;i++)
{
int s=g[a[i].x];
int t=g[a[i].y];
if(s>t)
{
swap(s,t);
}
ans+=2ll*s;
g[a[i].x]-=s;
g[a[i].y]-=s;
}
printf("%lld",ans);
}

BZOJ3712[PA2014]Fiolki——并查集重构树的更多相关文章

  1. 【BZOJ3712】Fiolki(并查集重构树)

    [BZOJ3712]Fiolki(并查集重构树) 题面 BZOJ 题解 很神仙的题目. 我们发现所有的合并关系构成了一棵树. 那么两种不同的东西如果产生反应,一定在两个联通块恰好联通的时候反应. 那么 ...

  2. [学习笔记]kruskal重构树 && 并查集重构树

    Kruskal 重构树 [您有新的未分配科技点][BZOJ3545&BZOJ3551]克鲁斯卡尔重构树 kruskal是一个性质优秀的算法 加入的边是越来越劣的 科学家们借这个特点尝试搞一点事 ...

  3. [bzoj3712][PA2014]Fiolki

    description 题面 data range \[ 0\le m<n\le 200000,0\le k\le 500000\] solution 之前本人一直煞笔地思考暴力是否可行 考虑按 ...

  4. BZOJ3712[PA2014]Fiolki 建图+倍增lca

    居然是一道图论题 毫无思路 我们对于每一次的融合操作 $(a,b)$ 建一个新点$c$ 并向$a,b$连边 再将$b$瓶当前的位置赋成$c$ 这样子我们就可以建成一个森林 现在枚举每一种反应$M_i$ ...

  5. [note]克鲁斯卡尔重构树

    克鲁斯卡尔重构树 又叫并查集重构树 大概在NOI2018之前还是黑科技 现在?烂大街了 主要是针对图上的对边有限制的一类问题 比如每次询问一个点u不能经过边权大于w的边能走到的第k大点权是多少 也就是 ...

  6. [BZOJ3712]Fiolki 重构树(并查集)

    3712: [PA2014]Fiolki Time Limit: 30 Sec  Memory Limit: 128 MB Description 化学家吉丽想要配置一种神奇的药水来拯救世界.吉丽有n ...

  7. NOI2018Day1T1 归程 并查集 kruskal kruskal重构树 倍增表 Dijkstra

    原文链接https://www.cnblogs.com/zhouzhendong/p/NOI2018Day1T1.html 题目传送门 - 洛谷P4768 题意 给定一个无向连通图,有 $n$ 个点 ...

  8. [NOI2018]归程(可持久化并查集,Kruskal重构树)

    解法一: 1.首先想到离线做法:将边和询问从大到小排序,并查集维护连通块以及每个连通块中所有点到1号点的最短距离.$O(n\log n)$ 配合暴力等可以拿到75分. 2.很容易想到在线做法,使用可持 ...

  9. CF1253F Cheap Robot(神奇思路,图论,最短路,最小生成树/Kruskal 重构树/并查集)

    神仙题. 先考虑平方级别的暴力怎么做. 明显答案有单调性,先二分 \(c\). 先最短路预处理 \(dis_u\) 表示 \(u\) 到离它最近的充电站的距离(一开始把 \(1\) 到 \(k\) 全 ...

随机推荐

  1. 2-物联网开发标配方案(51单片机程序介绍+WIFI程序介绍)

    上一节  https://www.cnblogs.com/yangfengwu/p/9944438.html 购买云服务器安装MQTT就不用说了,以前写过文章介绍 https://www.cnblog ...

  2. 一、java三大特性--封装

    封装字面意思即包装.专业点来说就是数据隐藏,是指利用抽象数据将数据和基于数据的操作封装起来,使其构成一个不可分割的独立实体,数据被保护在抽象数据类型的内部,尽可能的隐藏细节,只保留一些对外的接口和外部 ...

  3. python中#!/usr/bin/python与#!/usr/bin/env python的区别

    目的是在运行python脚本的时候告诉操作系统我们要用python解释器去运行py脚本 所以我们在第一句往往会写如下两句中的其中一句: #!/usr/bin/python 或 >#!/usr/b ...

  4. tornado学习篇(第二部)

    执行字符串表示的函数,并为该函数提供全局变量 本篇的内容从题目中就可以看出来,就是为之后剖析tornado模板做准备,     #!usr/bin/env python #coding:utf-8 n ...

  5. Angularjs演示Service功能

    在angularjs中,我们可以自定义自己的service.可以说得是自定义的方法,函数. 下面我们一步一步来演示吧:首先为angularjs定义一个app: var demoApp = angula ...

  6. C# LINQ 详解 From Where Select Group Into OrderBy Let Join

    目录 1. 概述 2. from子句 3. where子句 4. select子句 5. group子句 6. into子句 7. 排序子句 8. let子句 9. join子句 10. 小结 1. ...

  7. Luogu P2403 [SDOI2010]所驼门王的宝藏

    比较显然的缩点+拓扑排序题,只不过要建虚点优化建边. 首先我们发现在一个SCC里的点都是可以一起对答案产生贡献的,因此先缩成DAG,然后拓扑找最长链. 但是我们发现这题最坏情况下边数会达到恐怖的\(O ...

  8. ant+Jacoco 统计tomcat远程部署后项目接口自动化测试或者功能测试代码覆盖率

    1.安装ant 环境,https://ant.apache.org/bindownload.cgi 2.下载jacoco包  https://www.eclemma.org/jacoco/ ,解压后, ...

  9. Sql_连接查询中on筛选与where筛选的区别

    sql中的连接查询分为3种, cross join,inner join,和outer join ,  在 cross join和inner join中,筛选条件放在on后面还是where后面是没区别 ...

  10. 老牌阅读器nook2刷机整理

    kindle肯定是现在大多数人了解电纸书这个产品的开端,也给我留下了一段美好的回忆,不折腾,不死机,官方书城让人省心不少,不过作为半个折腾爱好者,kindle显然不符合我的理念,遂慢慢入了安卓电纸书的 ...