BZOJ1834[ZJOI2010]网络扩容——最小费用最大流+最大流
题目描述
输入
输出
输出文件一行包含两个整数,分别表示问题1和问题2的答案。
第一问没啥可说的,直接最大流就行。第二问显然是求最小费用最大流,第二次加边直接残量网络上把对应边建出来,不用再重新建图,只要把第一次建的边边权赋成INF,就能保证一定走的是第二次加的边。第二次加的边因为不确定每条边容量,所以都设成INF,但又要限制总流量,所以新建一个源点连一条边到原来的源点,容量为k,这样就保证了全图流量。
最后附上代码。
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
queue<int>Q;
int A[5010];
int B[5010];
int C[5010];
int D[5010];
int f[5010];
int vis[5010];
int c[100001];
int d[100001];
int q[100001];
int to[100001];
int val[100001];
int next[100001];
int from[100001];
int head[100001];
int S,T;
int sum;
int ans=0;
int tot=1;
int n,m,k;
int max_flow=0;
int INF=2147483647;
void add(int x,int y,int z,int w)
{
tot++;
next[tot]=head[x];
head[x]=tot;
to[tot]=y;
c[tot]=z;
val[tot]=w;
from[tot]=x;
tot++;
next[tot]=head[y];
head[y]=tot;
to[tot]=x;
c[tot]=0;
val[tot]=-w;
from[tot]=y;
}
int dfs(int x,int maxflow)
{
if(x==T)
{
return maxflow;
}
int used=0;
int nowflow;
for(int i=head[x];i;i=next[i])
{
if(c[i]!=0&&d[to[i]]==d[x]+1)
{
nowflow=dfs(to[i],min(maxflow-used,c[i]));
c[i]-=nowflow;
c[i^1]+=nowflow;
used+=nowflow;
if(nowflow==maxflow)
{
return maxflow;
}
}
}
if(used==0)
{
d[x]=-1;
}
return used;
}
bool bfs(int S,int T)
{
memset(d,-1,sizeof(d));
memset(q,0,sizeof(q));
d[S]=0;
int l=0;
int r=0;
q[r++]=S;
while(l<r)
{
int now=q[l];
for(int i=head[now];i;i=next[i])
{
if(d[to[i]]==-1&&c[i]!=0)
{
d[to[i]]=d[now]+1;
q[r++]=to[i];
}
}
l++;
}
if(d[T]!=-1)
{
return true;
}
return false;
}
void dinic()
{
while(bfs(S,T)==true)
{
ans+=dfs(S,INF);
}
}
bool SPFA()
{
for(int i=0;i<=T;i++)
{
d[i]=INF;
}
d[S]=0;
Q.push(S);
vis[S]=1;
while(!Q.empty())
{
int now=Q.front();
Q.pop();
vis[now]=0;
for(int i=head[now];i;i=next[i])
{
if(!c[i])
{
continue;
}
if(d[to[i]]>d[now]+val[i])
{
d[to[i]]=d[now]+val[i];
f[to[i]]=i;
if(!vis[to[i]])
{
Q.push(to[i]);
vis[to[i]]=1;
}
}
}
}
return d[T]!=INF;
}
void result()
{
int now=T;
int flow=INF;
while(now!=S)
{
flow=min(flow,c[f[now]]);
now=from[f[now]];
}
max_flow+=flow;
sum+=d[T]*flow;
now=T;
while(now!=S)
{
c[f[now]]-=flow;
c[f[now]^1]+=flow;
now=from[f[now]];
}
}
void find_min()
{
while(SPFA())
{
result();
}
}
int main()
{
scanf("%d%d%d",&n,&m,&k);
S=1;
T=n;
for(int i=1;i<=m;i++)
{
scanf("%d%d%d%d",&A[i],&B[i],&C[i],&D[i]);
add(A[i],B[i],C[i],0);
}
dinic();
printf("%d ",ans);
for(int i=1;i<=m;i++)
{
add(A[i],B[i],INF,D[i]);
}
S=0;
add(S,1,k,0);
find_min();
printf("%d",sum);
}
BZOJ1834[ZJOI2010]网络扩容——最小费用最大流+最大流的更多相关文章
- bzoj1834 ZJOI2010网络扩容(费用流)
给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容费用. 其中\(n ...
- BZOJ 1834 Luogu P2604 [ZJOI2010]网络扩容 (最小费用最大流)
题目连接: (luogu) https://www.luogu.org/problemnew/show/P2604 (bzoj) https://www.lydsy.com/JudgeOnline/p ...
- BZOJ-1834 网络扩容 最小费用最大流+最大流+乱搞
1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec Memory Limit: 64 MB Submit: 2269 Solved: 1136 [Submit ...
- 1834. [ZJOI2010]网络扩容【费用流】
Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需 ...
- bzoj1834 [ZJOI2010]网络扩容
Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. 将1到N的最大流增加K所需的 ...
- 【BZOJ1834】网络扩容(最大流,费用流)
[BZOJ1834]网络扩容(最大流,费用流) 题面 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下 ...
- BZOJ_1834_[ZJOI2010]network 网络扩容_费用流
BZOJ_1834_[ZJOI2010]network 网络扩容_费用流 题意: 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的 ...
- 【题解】Luogu P2604 [ZJOI2010]网络扩容
原题传送门:P2604 [ZJOI2010]网络扩容 这题可以说是板题 给你一个图,先让你求最大流 再告诉你,每条边可以花费一些代价,使得流量加一 问至少花费多少代价才能使最大流达到k 解法十分简单 ...
- 洛谷 P2604 [ZJOI2010]网络扩容 解题报告
P2604 [ZJOI2010]网络扩容 题目描述 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不扩容的情况下,1到N的最大流: 2. ...
随机推荐
- 查看Orcale数据里的表是否有变化
由于我们公司一个数据库两个应用在使用,导致一个应用修改了数据库,另一个应用用的缓存而不知道有更新还是原来的结果.原来的处理方式是采用session缓存的方式,用户登出了就清空缓存,这样只需要重新登录一 ...
- abp 取消权限校验
在abp中,通过ABP_PERMISSIONS表来存储定义appService中的方法权限校验.设置方式如下: [AbpAuthorize(PermissionNames.Pages_Users)] ...
- 搭建SSH服务
1.安装 ssh-server 通过命令进行安装:sudo apt-get install openssh-server 在安装时遇到问题,根据提示,执行命令:sudo apt-get update, ...
- Luogu3676 小清新数据结构题 动态点分治
传送门 换根类型的统计问题动态点分治都是很好做的. 设所有点的点权和为$sum$ 首先,我们先不考虑求$\sum\limits_i s_i^2$,先考虑如何在换根的情况下求$\sum\limits_i ...
- CF700E Cool Slogans SAM、线段树合并、树形DP
传送门 在最优的情况下,序列\(s_1,s_2,...,s_k\)中,\(s_i (i \in [2 , k])\)一定会是\(s_{i-1}\)的一个\(border\),即\(s_i\)同时是\( ...
- tomcat多实例方案启动脚本
批量启动 #!/bin/sh BASE_PATH="/usr/local/tomcat8/tomcat-ins/"bash $BASE_PATH/web1/tomcat.sh st ...
- Linux内核及分析 第二周 操作系统是如何工作的?
计算机是如何工作的? 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构: 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的时候堆栈机制对于计算机来说并不那么重要,但有了高级语言及函 ...
- LINUX内核分析第五周学习总结——扒开系统调用的“三层皮”(下)
LINUX内核分析第五周学习总结--扒开系统调用的"三层皮"(下) 标签(空格分隔): 20135321余佳源 余佳源 原创作品转载请注明出处 <Linux内核分析>M ...
- Linux内核分析第六周总结
进程控制块PCB--task_struct 操作系统的内核里的三大功能: 进程管理 内存管理 文件系统 进程描述符--task_struct 进程管理是最核心的内容 然而Linux进程的状态与操作系统 ...
- UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现(转)
UML图中类之间的关系:依赖,泛化,关联,聚合,组合,实现 类与类图 1) 类(Class)封装了数据和行为,是面向对象的重要组成部分,它是具有相同属性.操作.关系的对象集合的总称. 2) 在系统 ...