BZOJ1127 POI2008KUP(悬线法)
首先显然地,如果某个格子的权值超过2k,其一定不在答案之中;如果在[k,2k]中,其自身就可以作为答案。那么现在我们只需要考虑所选权值都小于k的情况。
可以发现一个结论:若存在一个权值都小于k的矩阵其权值和>=k,那么该矩阵一定存在权值和在[k,2k]中的子矩阵。
找到该子矩阵的过程和证明的过程是一样的:若其权值和已经在[k,2k]内,直接选择该矩阵即可;否则考虑从该矩阵中去掉一行(或一列)。如果矩阵剩下的部分权值和:
(1)在[0,k)内,对去掉的该行(或列)继续执行该操作
(2)在[k,2k]内,已找到答案
(3)在(2k,+∞)内,对剩下的矩阵继续执行该操作
由于矩阵中每一个权值都小于k,权值和不可能从>2k直接跳到<k,最终一定能找到合法矩阵。
于是只需要找到一个>=k的矩阵。悬线法即可。即先计算出每个位置向上向左向右最远能拓展到哪,然后根据其上方的点递推计算该悬线向左右拓展的最远位置。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 2010
int n,k,low,high,a[N][N],l[N][N],r[N][N],up[N][N];
int L,R,U,D;
long long s[N][N];
long long sum(int l,int r,int u,int d)
{
return s[d][r]-s[d][l-]-s[u-][r]+s[u-][l-];
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj1127.in","r",stdin);
freopen("bzoj1127.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
k=read(),n=read();
low=k,high=k<<;
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
{
s[i][j]=s[i-][j]+s[i][j-]-s[i-][j-]+(a[i][j]=read());
if (a[i][j]>=low&&a[i][j]<=high) {cout<<j<<' '<<i<<' '<<j<<' '<<i;return ;}
}
for (int i=;i<=n;i++)
{
for (int j=;j<=n;j++)
if (a[i][j]<low) up[i][j]=up[i-][j]+,l[i][j]=l[i][j-]+;
for (int j=n;j>=;j--)
if (a[i][j]<low) r[i][j]=r[i][j+]+;
for (int j=;j<=n;j++)
if (up[i][j]>) l[i][j]=min(l[i][j],l[i-][j]);
for (int j=n;j>=;j--)
if (up[i][j]>) r[i][j]=min(r[i][j],r[i-][j]);
}
for (int i=;i<=n;i++)
for (int j=;j<=n;j++)
if (a[i][j]<low&&sum(j-l[i][j]+,j+r[i][j]-,i-up[i][j]+,i)>=low)
{
L=j-l[i][j]+,R=j+r[i][j]-,U=i-up[i][j]+,D=i;
break;
}
if (!L) cout<<"NIE";
else
{
while (sum(L,R,U,D)>high)
{
if (D>U)
{
if (sum(L,R,U,D-)<low) U=D;
else D--;
}
else R--;
}
cout<<L<<' '<<U<<' '<<R<<' '<<D;
}
return ;
}
BZOJ1127 POI2008KUP(悬线法)的更多相关文章
- 【BZOJ-1127】KUP 悬线法 + 贪心
1127: [POI2008]KUP Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 317 Solved: 11 ...
- 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法
3039: 玉蟾宫 Time Limit: 2 Sec Memory Limit: 128 MBSubmit: 753 Solved: 444[Submit][Status][Discuss] D ...
- BZOJ_3039_玉蟾宫_(动态规划+悬线法)
描述 http://www.lydsy.com/JudgeOnline/problem.php?id=3039 n*m的矩阵由R和F组成,求全是F的子矩阵的大小的三倍. 分析 悬线法: 浅谈用极大化思 ...
- BZOJ 1057: [ZJOI2007]棋盘制作( dp + 悬线法 )
对于第一问, 简单的dp. f(i, j)表示以(i, j)为左上角的最大正方形, f(i, j) = min( f(i + 1, j), f(i, j + 1), f(i + 1, j + 1)) ...
- BZOJ 3039: 玉蟾宫( 悬线法 )
最大子矩阵...悬线法..时间复杂度O(nm) 悬线法就是记录一个H向上延伸的最大长度(悬线), L, R向左向右延伸的最大长度, 然后通过递推来得到. ----------------------- ...
- [POJ1964]City Game (悬线法)
题意 其实就是BZOJ3039 不过没权限号(粗鄙之语) 同时也是洛谷4147 就是求最大子矩阵然后*3 思路 悬线法 有个博客讲的不错https://blog.csdn.net/u012288458 ...
- [P1169] 棋盘制作 &悬线法学习笔记
学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...
- P1169 [ZJOI2007]棋盘制作 DP悬线法
题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...
- P4147 玉蟾宫 二维DP 悬线法
题目背景 有一天,小猫rainbow和freda来到了湘西张家界的天门山玉蟾宫,玉蟾宫宫主蓝兔盛情地款待了它们,并赐予它们一片土地. 题目描述 这片土地被分成N*M个格子,每个格子里写着'R'或者'F ...
随机推荐
- docker镜像的创建commit及dockerfile
在docker 1.3版本以前使用attach进入容器会经常出现卡死的情况,之后官方退出了exec命令,从宿主机进入,但是从其他远程主机进入使用ssh服务来维护是用户熟悉的方法.所以这里来创建一个带有 ...
- kubernetes集群中对多个pod操作命令
$ for i in 0 1; do kubectl exec web-$i -- sh -c 'echo hello $(hostname) > /usr/share/nginx/html/i ...
- SourceInsight工具增强——AStyle(代码格式化)、PC-Lint(静态检查)
Artistic Style(AStyle) AStyle是一款开源.高效.精简的代码格式化工具,适用于C.C++.C#.Java等.官方地址在:http://astyle.sourceforge.n ...
- 不存在具有键“xxxId”的“IEnumerable<SelectListItem>”类型的 ViewData 项
项目中的某个页面,在访问时出现以下错误: 不存在具有键“xxxId”的“IEnumerable<SelectListItem>”类型的 ViewData 项 具体的场景说明如下: 一个编辑 ...
- Solr数据库导入
Solr数据库导入 1.在MySQL中创建一张表t_solr,并插入测试数据. 2.把E:\Solr\solr-4.10.4\example\example-DIH\solr\db\conf下的adm ...
- JAVA核心:内存、比较和Final
1.java是如何管理内存的 java的内存管理就是对象的分配和释放问题.(其中包括两部分) 分配:内存的分配是由程序完成的,程序员需要通过关键字new为每个对象申请内存空间(基本类型除外),所有的对 ...
- echarts柱状图标签显示不完全的问题
echarts 柱状图当x轴标签数目超过一定数目时在小尺寸设备上第一个和最后一个标签不显示(不是重叠),axisLabel设置interval:0也不起作用; 解决办法: 这个问题存在于4.0版本以上 ...
- 开启C语言的学习之门
本人是一枚工业界的码农,为了职业道路越来越宽广决定向上位机方面进军,C语言曾经在大学里面学过点皮毛但是离应用远远不够,尽量每天在工作之余更新自己学习的进度,同时也希望有大神能给予在编程道路上的指导,话 ...
- PHP magic_quotes_gpc 和 addslashes解析
默认情况下,PHP 指令 magic_quotes_gpc 为 on,它主要是对所有的 GET.POST 和 COOKIE 数据自动运行 addslashes().不要对已经被 magic_quote ...
- 【M2】软件工程终期总结报告——阅读作业
PhylabWeb——阅读作业 问题回顾 提问博客地址:http://www.cnblogs.com/kibbon/p/4831104.html 尚待解决的问题: Alpha/Beta,ZBB/RC阶 ...