codeforces604B
More Cowbell
Kevin Sun wants to move his precious collection of n cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into k boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.
Kevin is a meticulous cowbell collector and knows that the size of his i-th (1 ≤ i ≤ n) cowbell is an integer si. In fact, he keeps his cowbells sorted by size, so si - 1 ≤ si for any i > 1. Also an expert packer, Kevin can fit one or two cowbells into a box of size s if and only if the sum of their sizes does not exceed s. Given this information, help Kevin determine the smallest s for which it is possible to put all of his cowbells into k boxes of size s.
Input
The first line of the input contains two space-separated integers n and k (1 ≤ n ≤ 2·k ≤ 100 000), denoting the number of cowbells and the number of boxes, respectively.
The next line contains n space-separated integers s1, s2, ..., sn (1 ≤ s1 ≤ s2 ≤ ... ≤ sn ≤ 1 000 000), the sizes of Kevin's cowbells. It is guaranteed that the sizes si are given in non-decreasing order.
Output
Print a single integer, the smallest s for which it is possible for Kevin to put all of his cowbells into k boxes of size s.
Examples
- 2 1
2 5
- 7
- 4 3
2 3 5 9
- 9
- 3 2
3 5 7
- 8
Note
In the first sample, Kevin must pack his two cowbells into the same box.
In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}.
In the third sample, the optimal solution is {3, 5} and {7}.
sol:很显然答案是可以二分的,难点在于判断当前答案是否可行,一种较为容易想到的贪心,尽量用一个最大的配上一个最小的,易知一定是最优的
- #include <bits/stdc++.h>
- using namespace std;
- typedef int ll;
- inline ll read()
- {
- ll s=;
- bool f=;
- char ch=' ';
- while(!isdigit(ch))
- {
- f|=(ch=='-'); ch=getchar();
- }
- while(isdigit(ch))
- {
- s=(s<<)+(s<<)+(ch^); ch=getchar();
- }
- return (f)?(-s):(s);
- }
- #define R(x) x=read()
- inline void write(ll x)
- {
- if(x<)
- {
- putchar('-'); x=-x;
- }
- if(x<)
- {
- putchar(x+''); return;
- }
- write(x/);
- putchar((x%)+'');
- return;
- }
- #define W(x) write(x),putchar(' ')
- #define Wl(x) write(x),putchar('\n')
- const int N=;
- int n,m,a[N];
- inline bool Judge(int mid)
- {
- int l=,r=n,cnt=;
- while(l<=r)
- {
- if(a[l]+a[r]<=mid)
- {
- cnt++; l++; r--;
- }
- else
- {
- cnt++; r--;
- }
- }
- return (cnt<=m)?:;
- }
- int main()
- {
- int i;
- R(n); R(m);
- for(i=;i<=n;i++) R(a[i]);
- sort(a+,a+n+);
- int l=a[n],r=;
- while(l<=r)
- {
- int mid=(l+r)>>;
- if(Judge(mid)) r=mid-;
- else l=mid+;
- }
- Wl(l);
- return ;
- }
- /*
- input
- 2 1
- 2 5
- output
- 7
- input
- 4 3
- 2 3 5 9
- output
- 9
- input
- 3 2
- 3 5 7
- output
- 8
- */
codeforces604B的更多相关文章
随机推荐
- SQL 行转列 列转行 PIVOT UNPIVOT
1.基础表 2.行转列,注意ISNULL函数的使用,在总成绩的统计中,ISNULL(-,0) 有必要使用 3.列转行,对列语文.数学.英语.政治,进行列转行,转为了2列,score scname 这两 ...
- 专业语音芯片MT8516 华为AM08蓝牙音箱
天猫精灵和亚马逊专用的语音芯片哦!联发科! 华为AM08蓝牙音箱 WT51F5161T的8052 微处理器,RC内振12MHz,具有16Kx8 的flash,硬件IIC,SPI,CEC,IR,RTC, ...
- 三、java三大特性--多态
面向对象编程有三大特性:封装.继承.多态. 封装隐藏了类的内部实现机制,可以在不影响使用的情况下改变类的内部结构,同时也保护了数据.对外界而已它的内部细节是隐藏的,暴露给外界的只是它的访问方法. 继承 ...
- BZOJ3720 Gty的妹子树 询问分块、主席树
传送门 学到了询问分块的科技-- 对于修改操作,每发生了\(S\)次修改就重构整棵树,小于\(S\)次的修改操作丢到一个队列里面. 对于每一次查询操作,先在主席树上查询当前子树内部大于\(k\)的节点 ...
- [Spark][Hive]Hive的命令行客户端启动:
[Spark][Hive]Hive的命令行客户端启动: [training@localhost Desktop]$ chkconfig | grep hive hive-metastore 0:off ...
- python中和生成器协程相关的yield之最详最强解释,一看就懂(一)
yield是python中一个非常重要的关键词,所有迭代器都是yield实现的,学习python,如果不把这个yield的意思和用法彻底搞清楚,学习python的生成器,协程和异步io的时候,就会彻底 ...
- PEP8 Python编程规范
官方文档: https://www.python.org/dev/peps/pep-0008/ ---------------------------------------------------- ...
- open-falcon ---安装Dashboard时候报错"SSLError: The read operation timed out"
在部署open-falcon环境过程中,安装Dashboard时候报错"SSLError: The read operation timed out".如下: [root@open ...
- 12.8 Daily Scrum
最近大家都比较忙,任务今天也才刚刚分配,所以具体的编码任务从明天开始. Tomorrow's Task 丁辛 完善餐厅列表,显示距离. 邓亚梅 美化搜索框 ...
- Linux内核分析— —操作系统是如何工作的(20135213林涵锦)
mykernel实验指导(操作系统是如何工作的) 实验要求 运行并分析一个精简的操作系统内核,理解操作系统是如何工作的 使用实验楼的虚拟机打开shell cd LinuxKernel/linux-3. ...