Unsupervised Visual Representation Learning by Context Prediction

Note here: it's a learning note on unsupervised learning model from Prof. Gupta's group.

Link: http://120.52.73.9/www.cv-foundation.org/openaccess/content_iccv_2015/papers/Doersch_Unsupervised_Visual_Representation_ICCV_2015_paper.pdf

Motivation:

- Similar to most motivations of unsupervised learning method, cut it out here.

Proposed Model:

- Given one central patch of the object, and another one arounding it, the model must guess the relative spatial configuration between these two patches.

- Intuition: when human doing this assignment, we get higher accuracy once we recognize what object it is and what it’s like with a whole look. That is to say, a model plays well on this game would have percepted the features of each object.

(i.e. we can get right answer for the following quizz once we recognize what objects they are.)

So the unsupervised representation learning can also be formulated as learning an embedding where images that are semantically similar close, while semantically different ones are far apart.

- Pipline:

  • Feed two patches into a parallel convolutional network which share parameters.
  • Fuse the feature vector of each patch and pass through stacked fully connected layers.
  • Come out with an eight-dimension vector that predicts relative spatial configuration between the two patches.
  • Compute loss, gradients and back propagate through this network to update weights.

Aoiding “trivial” solutions:

We need to preprocess images to avoid the model learns some trivial features, like:

- Low-level cues like boundary patterns or textures continuing between patches, which could potentially serve as a shortcut.

- Chromatic aberration: it arises from differences in the way the lens focuses light and different wavelengths. In some cameras, one color channel (commonly green) is shrunk toward the image center relative to the others. Once the network learns the absolute location on the lens, solving the relatve location task becomes trivial.

【CV】ICCV2015_Unsupervised Visual Representation Learning by Context Prediction的更多相关文章

  1. 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos

    Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...

  2. 【CV】ICCV2015_Unsupervised Learning of Spatiotemporally Coherent Metrics

    Unsupervised Learning of Spatiotemporally Coherent Metrics Note here: it's a learning note on the to ...

  3. 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo

    论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...

  4. Microsoft Azure Web Sites应用与实践【3】—— 通过Visual Studio Online在线编辑Microsoft Azure 网站

    Microsoft Azure Web Sites应用与实践 系列: [1]—— 打造你的第一个Microsoft Azure Website [2]—— 通过本地IIS 远程管理Microsoft ...

  5. Momentum Contrast for Unsupervised Visual Representation Learning (MoCo)

    Momentum Contrast for Unsupervised Visual Representation Learning 一.Methods Previously Proposed 1. E ...

  6. Momentum Contrast for Unsupervised Visual Representation Learning

    Momentum Contrast for Unsupervised Visual Representation Learning 一.Methods Previously Proposed 1. E ...

  7. 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)

    Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...

  8. 【VBS】使用Visual Studio调试VBS程序

    首先要确保机器上安装了Visual Stuido, 然后打开命令行窗口执行如下命令,会弹出是否使用Visual Studio进行调试的确认窗口. 点[是]进行调试. WScript.exe [vbs文 ...

  9. 论文阅读笔记(五)【CVPR2012】:Large Scale Metric Learning from Equivalence Constraints

    由于在读文献期间多次遇见KISSME,都引自这篇CVPR,所以详细学习一下. Introduction 度量学习在机器学习领域有很大作用,其中一类是马氏度量学习(Mahalanobis metric ...

随机推荐

  1. Nginx实现页面缓存

    页面缓存 1.缓存指令 Nginx的缓存配置比较直观简单,具体有下面几个指令需要知道: A.proxy_cache_path 格式:proxy_cache_path path [levels=numb ...

  2. 八皇后问题的Python实现和C#实现

    看到八皇后问题的解决思路, 感觉很喜欢. 我用C#实现的版本之前贴在了百度百科上(https://baike.baidu.com/item/%E5%85%AB%E7%9A%87%E5%90%8E%E9 ...

  3. JavaScript中遍历数组和对象的方法

    js数组遍历和对象遍历 针对js各种遍历作一个总结分析,从类型用处,分析数组和对象各种遍历使用场景,优缺点等 JS数组遍历: 1,普通for循环,经常用的数组遍历 var arr = [1,2,0,3 ...

  4. vue-cli 打包后显示favicon.ico小图标

    第一步:favicon.ico小图标放在static里面 第二步:index.html 文件中引入时需要写 ./ 相对路径 第三部:npm run build 打包 打包完成就可以看到 favicon ...

  5. Luogu P3462 [POI2007]ODW-Weights

    题目描述 While moving to a new compound the Byteotian Institute of Experimental Physics has encountered ...

  6. Django urls 路由

    写url和视图的的对应关系 from django.conf.urls import url from django.contrib import admin from app名 import vie ...

  7. AJAX基础知识点学习

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/huangyibin628/article/details/28281003 1.AJAX(Async ...

  8. centos7下安装docker(9.3容器对资源的使用限制-Block IO))

    Block IO:指的是磁盘的读写,docker 可以通过设置权重,限制bps和iops的方式控制容器读写磁盘的带宽 注:目前block IO限额只对direct IO(不使用文件缓存)有效. 1.B ...

  9. ansible-role写法

    一.role目录的创建: cd /etc/ansible/ mkdir -pv roles/{websrvs,dbsrvs}/{tasks,files,templates,meta,handlers, ...

  10. AI 概率论

    概率论 不确定性 量化 频率 频率派 贝叶斯派 1.随机变量(random variable) 随机取不同值的变量,取值可以离散或者连续. 2.概率分布(probability distributio ...