【】tensorflow学习笔记
一、看懂了Tensor("mul_1:0", shape=(), dtype=int32)中的shape
https://blog.csdn.net/u013378306/article/details/56281549
张量的阶、形状、数据类型
TensorFlow用张量这种数据结构来表示所有的数据.你可以把一个张量想象成一个n维的数组或列表.一个张量有一个静态类型和动态类型的维数.张量可以在图中的节点之间流通.
阶
在TensorFlow系统中,张量的维数来被描述为阶.但是张量的阶和矩阵的阶并不是同一个概念.张量的阶(有时是关于如顺序或度数或者是n维)是张量维数的一个数量描述.比如,下面的张量(使用Python中list定义的)就是2阶.
t = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
你可以认为一个二阶张量就是我们平常所说的矩阵,一阶张量可以认为是一个向量.对于一个二阶张量你可以用语句t[i, j]
来访问其中的任何元素.而对于三阶张量你可以用't[i, j, k]'来访问其中的任何元素.
阶 | 数学实例 | Python 例子 |
---|---|---|
0 | 纯量 (只有大小) | s = 483 |
1 | 向量(大小和方向) | v = [1.1, 2.2, 3.3] |
2 | 矩阵(数据表) | m = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] |
3 | 3阶张量 (数据立体) | t = [[[2], [4], [6]], [[8], [10], [12]], [[14], [16], [18]]] |
n | n阶 (自己想想看) | .... |
形状
TensorFlow文档中使用了三种记号来方便地描述张量的维度:阶,形状以及维数.下表展示了他们之间的关系:
阶 | 形状 | 维数 | 实例 |
---|---|---|---|
0 | [ ] | 0-D | 一个 0维张量. 一个纯量. |
1 | [D0] | 1-D | 一个1维张量的形式[5]. |
2 | [D0, D1] | 2-D | 一个2维张量的形式[3, 4]. |
3 | [D0, D1, D2] | 3-D | 一个3维张量的形式 [1, 4, 3]. |
n | [D0, D1, ... Dn] | n-D | 一个n维张量的形式 [D0, D1, ... Dn]. |
shape [2,3] 表示为数组的意思是第一维有两个元素,第二维有三个元素,如: [[1,2,3],[4,5,6]]
- ```python
- # 2-D tensor `a`
- a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]
- [4. 5. 6.]]
- # 2-D tensor `b`
- b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
- [9. 10.]
- [11. 12.]]
- c = tf.matmul(a, b) => [[58 64]
- [139 154]]
- # 3-D tensor `a`
- a = tf.constant(np.arange(1,13), shape=[2, 2, 3]) => [[[ 1. 2. 3.]
- [ 4. 5. 6.]],
- [[ 7. 8. 9.]
- [10. 11. 12.]]]
- # 3-D tensor `b`
- b = tf.constant(np.arange(13,25), shape=[2, 3, 2]) => [[[13. 14.]
- [15. 16.]
- [17. 18.]],
- [[19. 20.]
- [21. 22.]
- [23. 24.]]]
- c = tf.matmul(a, b) => [[[ 94 100]
- [229 244]],
- [[508 532]
- [697 730]]]
tensorflow中有一类在tensor的某一维度上求值的函数,
如:
求最大值tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None)
求平均值tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)
参数(1)input_tensor:待求值的tensor。
参数(2)reduction_indices:在哪一维上求解。
参数(3)(4)可忽略
举例说明:
# 'x' is [[1., 2.]
# [3., 4.]]
x是一个2维数组,分别调用reduce_*函数如下:
首先求平均值,
tf.reduce_mean(x) ==> 2.5 #如果不指定第二个参数,那么就在所有的元素中取平均值
tf.reduce_mean(x, 0) ==> [2., 3.] #指定第二个参数为0,则第一维的元素取平均值,即每一列求平均值
tf.reduce_mean(x, 1) ==> [1., 2.] #
指定第二个参数为1,则第二维的元素取平均值,即每一行求平均值
同理,还可用tf.reduce_max()求最大值。
【】tensorflow学习笔记的更多相关文章
- Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
随机推荐
- Comparison of several types of convergence
In functional analysis, several types of convergence are defined, namely, strong convergence for ele ...
- libsecp256k1 与 openssl ecdsa
1. 历史 区块链节点在接收到的用户发送的交易时,首先会验证交易所涉及utxo的可用性.方法是验证用户签名的合法性,涉及的签名算法就是secp256k1,一种椭圆曲线加密算法. 长期以来,实现了该算法 ...
- Codeforces 758F Geometrical Progression
Geometrical Progression n == 1的时候答案为区间长度, n == 2的时候每两个数字都可能成为答案, 我们只需要考虑 n == 3的情况, 我们可以枚举公差, 其分子分母都 ...
- siege压力测试工具安装和介绍
Siege是linux下的一个web系统的压力测试工具,支持多链接,支持get和post请求,可以对web系统进行多并发下持续请求的压力测试. 安装 Siege #wget http://www.jo ...
- BZOJ1975 [Sdoi2010]魔法猪学院 k短路
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1975 题意概括 给出一个无向图,让你走不同的路径,从1到n,路径长度之和不超过E,求最大路径条数. ...
- 亲和串 kmp
Problem Description 人随着岁数的增长是越大越聪明还是越大越笨,这是一个值得全世界科学家思考的问题,同样的问题Eddy也一直在思考,因为他在很小的时候就知道亲和串如何判断了,但是发现 ...
- 046 SparlSQL中的函数
一:SparkSQL中的函数 1.说明 2.展示所有的函数 qlContext.sql("show functions").show(300) 3.functions类 所有内置支 ...
- Python enum 枚举 判断 key(键) 或者 value(值)是否在枚举中
Python enum 枚举 判断 key(键) 或者 value(值)是否在枚举中 python 的基本用法请浏览:https://www.cnblogs.com/ibingshan/p/98564 ...
- AspectJ(AOP)切面获取参数名称和参数
@Async @AfterReturning(value ="execution(public * com.zhx.recharge.service.RechargeService.buil ...
- idea工具maven生命周期clean,install,package等区别
idea工具maven projects里面有9种生命周期,生命周期是包含在一个项目构建中的一系列有序的阶段. 一.最常用的两种打包方法: 1.clean,package(如果报错,很可能就是jar依 ...