UOJ #390. 【UNR #3】百鸽笼
UOJ #390. 【UNR #3】百鸽笼
看这道题之前先看一道相似的题目 【PKUWC2018】猎人杀。
考虑类似的容斥:
我们不妨设处理\(1\)的概率。
我们令集合\(T\)中的所有鸽笼都在\(1\)变空之前不为空的,其它的鸽笼随便。要做到这一点,我们只需要令每个\(T\)集合中的鸽笼容量\(--\)就行了。然后我们用背包背出所有序列的方案数(不包括\(1\)),然后在将\(1\)插入序列中。插入时,将\(w_i-1\)个随便插入,然后再将一个放在序列末尾。
具体实现时,我们可以枚举"\(1\)",然后对其它的鸽笼进行背包。但是复杂度会达到\(O(n^6)\)。于是我们先对所有鸽笼进行背包,计算"\(1\)"的时候直接将它的贡献消除,也就是做"反背包"。复杂度就是\(O(n^5)\)。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 35
#define mod 998244353
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,w[N];
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
ll fac[1005],inv[1005];
ll C(int n,int m) {
if(n<m) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
ll f[N][N*N];
ll g[N][N*N];
int sum;
void solve(int now) {
memcpy(f,g,sizeof(f));
for(int i=1;i<=n;i++) {
for(int j=0;j<=sum;j++) {
for(int q=0;q<w[now]&&q<=j;q++) {
f[i][j]=(f[i][j]-f[i-1][j-q]*C(j,q)%mod+mod)%mod;
}
}
}
ll ans=0,flag=1;
for(int i=0;i<n;i++,flag*=-1) {
ll invi=ksm(i+1,mod-2),t=ksm(invi,w[now]);
for(int j=0;j<=sum;j++,t=t*invi%mod) {
if(!f[i][j]) continue ;
(ans+=flag*C(j+w[now]-1,w[now]-1)*f[i][j]%mod*t%mod)%=mod;
}
}
cout<<(ans+mod)%mod<<" ";
}
int main() {
fac[0]=1;
for(int i=1;i<=900;i++) fac[i]=fac[i-1]*i%mod;
inv[900]=ksm(fac[900],mod-2);
for(int i=899;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
n=Get();
for(int i=1;i<=n;i++) w[i]=Get();
g[0][0]=1;
for(int i=1;i<=n;i++) {
sum+=w[i]-1;
for(int j=i;j>=1;j--) {
for(int k=sum;k>=0;k--) {
for(int q=0;q<w[i]&&q<=k;q++) {
(g[j][k]+=g[j-1][k-q]*C(k,q))%=mod;
}
}
}
}
for(int i=1;i<=n;i++) solve(i);
return 0;
}
UOJ #390. 【UNR #3】百鸽笼的更多相关文章
- 【UOJ#390】【UNR#3】百鸽笼(动态规划,容斥)
[UOJ#390][UNR#3]百鸽笼(动态规划,容斥) 题面 UOJ 题解 发现这就是题解里说的:"火山喷发概率问题"(大雾 考虑如果是暴力的话,你需要记录下当前每一个位置的鸽笼 ...
- UOJ.311.[UNR#2]积劳成疾(DP)
UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...
- uoj【UNR #3】To Do Tree 【贪心】
题目链接 uojUNR3B 题解 如果不输出方案,是有一个经典的三分做法的 但是要输出方案也是可以贪心的 设\(d[i]\)为\(i\)节点到最深的儿子的距离 贪心选择\(d[i]\)大的即可 #in ...
- UOJ.386.[UNR #3]鸽子固定器(贪心 链表)
题目链接 \(Description\) 选最多\(m\)个物品,使得它们的\((\sum vi)^{dv}-(s_{max}-s_{min})^{du}\)最大. \(Solution\) 先把物品 ...
- Noip模拟80 2021.10.18
预计得分:5 实际得分:140?????????????? T1 邻面合并 我考场上没切掉的大水题....(证明我旁边的cty切掉了,并觉得很水) 然而贪心拿了六十,离谱,成功做到上一篇博客说的有勇气 ...
- NOIP前的刷题记录
因为这几天要加油,懒得每篇都来写题解了,就这里记录一下加上一句话题解好了 P4071 [SDOI2016]排列计数 组合数+错排 loj 6217 扑克牌 暴力背包 P2511 [HAOI2008 ...
- NOIP模拟80
学考+OJ改名祭 T1 邻面合并 解题思路 状压 DP ...(于是贪心竟然有 60pts 的高分?? code) 状态设计的就非常妙了,如果状态是 1 就表示是一个分割点也就是一个矩形的右边界. 那 ...
- 【UOJ#311】【UNR #2】积劳成疾(动态规划)
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
随机推荐
- cJSON填坑记
1. 艰辛的过程 最近做了一个嵌入式的项目,需要与服务器进行连接.为了方便服务器处理数据,经商定后统一采用JSON形式进行数据的传输. 以前没有用过JSON格式进行数据处理,所以上网搜索了一下,很多人 ...
- https Java SSL Exception protocol_version
在java代码中,使用HttpClient爬取https页面时,遇到了这个bug:javax.net.ssl.SSLException: Received fatal alert: protocol_ ...
- c# API接受图片文件以文件格式上传图片
/// 文件图片上传 /// </summary> /// <returns>成功上传返回上传后的文件名</returns> [HttpPost] public a ...
- Java学习笔记之——循环语句
一.for循环 语法: for(变量初始化:条件判断:更新循环变量){ 循环体: } 案例: 二.while循环 语法: while(条件){ 循环体: } 如果条件为true,执行循环体,false ...
- UDP服务器/客户端代码示例
UDP服务器代码: #include <errno.h> #include <string.h> #include <stdlib.h> #include < ...
- 递归函数获得n个不重复的随机数
// 递归函数获取不重复的随机数 var arr_end; // 用于保存最后得到的数组 function suiji(n) { var arr = [] // 产生n个随机数加入数组 for(var ...
- JS之用ES6 Promise解决回调地狱(这里以小程序为例)
首先 写一个请求的方法,如: /** * 银行窗口 * 你需要给我提供相关的相关参数我帮你提交到服务器上 * 我会给你一个等待区的编号给你 你去等待区等待,我处理完成会去等待区通知你 * @param ...
- WEB前端面试2014阿里旺旺
NO1.下图绿色区域的宽度为100%,其中有三个矩形,第一个矩形的宽度是200px,第二个和第三个矩形的宽度相等.请使用css3中的功能实现它们的布局. 已知HTML结构是: <div clas ...
- JS中的数学方法
1 . Math.ceil() 向上取整 2. Math.floor() 向下取整 3. Math.round() 四舍五入取整 4. Math.random() 生成 ...
- 【读书笔记】iOS-Apple的移动设备硬件
本书中有一个关键观点是:“硬件并不是特别重要,用户体验才是真正的杀手级应用.“尽管如此,多了解一些你使用的硬件的相关知识,对于整个项目来说是必备的,而对于设计和开发高质量的作品来说敢是不可或缺的. 人 ...