UOJ #390. 【UNR #3】百鸽笼
UOJ #390. 【UNR #3】百鸽笼
看这道题之前先看一道相似的题目 【PKUWC2018】猎人杀。
考虑类似的容斥:
我们不妨设处理\(1\)的概率。
我们令集合\(T\)中的所有鸽笼都在\(1\)变空之前不为空的,其它的鸽笼随便。要做到这一点,我们只需要令每个\(T\)集合中的鸽笼容量\(--\)就行了。然后我们用背包背出所有序列的方案数(不包括\(1\)),然后在将\(1\)插入序列中。插入时,将\(w_i-1\)个随便插入,然后再将一个放在序列末尾。
具体实现时,我们可以枚举"\(1\)",然后对其它的鸽笼进行背包。但是复杂度会达到\(O(n^6)\)。于是我们先对所有鸽笼进行背包,计算"\(1\)"的时候直接将它的贡献消除,也就是做"反背包"。复杂度就是\(O(n^5)\)。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 35
#define mod 998244353
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
int n,w[N];
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
ll fac[1005],inv[1005];
ll C(int n,int m) {
if(n<m) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
ll f[N][N*N];
ll g[N][N*N];
int sum;
void solve(int now) {
memcpy(f,g,sizeof(f));
for(int i=1;i<=n;i++) {
for(int j=0;j<=sum;j++) {
for(int q=0;q<w[now]&&q<=j;q++) {
f[i][j]=(f[i][j]-f[i-1][j-q]*C(j,q)%mod+mod)%mod;
}
}
}
ll ans=0,flag=1;
for(int i=0;i<n;i++,flag*=-1) {
ll invi=ksm(i+1,mod-2),t=ksm(invi,w[now]);
for(int j=0;j<=sum;j++,t=t*invi%mod) {
if(!f[i][j]) continue ;
(ans+=flag*C(j+w[now]-1,w[now]-1)*f[i][j]%mod*t%mod)%=mod;
}
}
cout<<(ans+mod)%mod<<" ";
}
int main() {
fac[0]=1;
for(int i=1;i<=900;i++) fac[i]=fac[i-1]*i%mod;
inv[900]=ksm(fac[900],mod-2);
for(int i=899;i>=0;i--) inv[i]=inv[i+1]*(i+1)%mod;
n=Get();
for(int i=1;i<=n;i++) w[i]=Get();
g[0][0]=1;
for(int i=1;i<=n;i++) {
sum+=w[i]-1;
for(int j=i;j>=1;j--) {
for(int k=sum;k>=0;k--) {
for(int q=0;q<w[i]&&q<=k;q++) {
(g[j][k]+=g[j-1][k-q]*C(k,q))%=mod;
}
}
}
}
for(int i=1;i<=n;i++) solve(i);
return 0;
}
UOJ #390. 【UNR #3】百鸽笼的更多相关文章
- 【UOJ#390】【UNR#3】百鸽笼(动态规划,容斥)
[UOJ#390][UNR#3]百鸽笼(动态规划,容斥) 题面 UOJ 题解 发现这就是题解里说的:"火山喷发概率问题"(大雾 考虑如果是暴力的话,你需要记录下当前每一个位置的鸽笼 ...
- UOJ.311.[UNR#2]积劳成疾(DP)
UOJ 序列中的每个位置是等价的.直接令\(f[i][j]\)表示,\(i\)个数的序列,最大值不超过\(j\)的所有序列每个长为\(k\)的子区间最大值的乘积的和. 由\(j-1\)转移到\(j\) ...
- uoj【UNR #3】To Do Tree 【贪心】
题目链接 uojUNR3B 题解 如果不输出方案,是有一个经典的三分做法的 但是要输出方案也是可以贪心的 设\(d[i]\)为\(i\)节点到最深的儿子的距离 贪心选择\(d[i]\)大的即可 #in ...
- UOJ.386.[UNR #3]鸽子固定器(贪心 链表)
题目链接 \(Description\) 选最多\(m\)个物品,使得它们的\((\sum vi)^{dv}-(s_{max}-s_{min})^{du}\)最大. \(Solution\) 先把物品 ...
- Noip模拟80 2021.10.18
预计得分:5 实际得分:140?????????????? T1 邻面合并 我考场上没切掉的大水题....(证明我旁边的cty切掉了,并觉得很水) 然而贪心拿了六十,离谱,成功做到上一篇博客说的有勇气 ...
- NOIP前的刷题记录
因为这几天要加油,懒得每篇都来写题解了,就这里记录一下加上一句话题解好了 P4071 [SDOI2016]排列计数 组合数+错排 loj 6217 扑克牌 暴力背包 P2511 [HAOI2008 ...
- NOIP模拟80
学考+OJ改名祭 T1 邻面合并 解题思路 状压 DP ...(于是贪心竟然有 60pts 的高分?? code) 状态设计的就非常妙了,如果状态是 1 就表示是一个分割点也就是一个矩形的右边界. 那 ...
- 【UOJ#311】【UNR #2】积劳成疾(动态规划)
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...
- [FWT] UOJ #310. 【UNR #2】黎明前的巧克力
[uoj#310][UNR #2]黎明前的巧克力 FWT - GXZlegend - 博客园 f[i][xor],考虑优化暴力,暴力就是FWT xor一个多项式 整体处理 (以下FWT代表第一步) F ...
随机推荐
- 【学习笔记】JS经典异步操作,从闭包到async/await
参考文献:王仕军——知乎专栏前端周刊 感谢作者的热心总结,本文在理解的基础上,根据自己能力水平作了一点小小的修改,在加深自己印象的同时也希望能和各位共同进步... 1. 异步与for循环 抛出一个问题 ...
- C#微信公众号开发--网页授权(oauth2.0)获取用户基本信息一
前言 微信网页授权共分为两种方式:snsapi_base.snsapi_userinfo. snsapi_base需要关注公众号,获取用户信息时不弹出用户授权界面. snsapi_userinfo是在 ...
- 一道生成不重复随机数字的C#笔试编程题
当时写在纸上的程序没有验证输入,出面试公司没多久就突然想起来这点了,囧啊! 不过当时笔试的时候想到写异常处理了. 回来上机整理了一下程序,才发现原来还会用到递归的. 当时面试官边说边出的题,问他数字是 ...
- elasticsearch6.7 05. Document APIs(7)Update By Query API
6.Update By Query API _update_by_query 接口可以在不改变 source 的情况下对 index 中的每个文档进行更新.这对于获取新属性或其他联机映射更改很有用.以 ...
- IDEA maven 项目如何上传到私服仓库
前言:idea maven 发布版本到私服(快照和正式版).我有个项目( jar 包源码),其他 maven 项目能直接引入依赖就最好了,所以必须将这个 jar 包源码发布到 maven 私服仓库里去 ...
- HTML暗黑料理之a标签执行请求不跳转页面
不是被逼无奈不建议用这HTML暗黑料理. <iframe id="></iframe> <a class="large green button&qu ...
- Flask的Context(上下文)学习笔记
上下文是一种属性的有序序列,为驻留在环境内的对象定义环境.在对象的激活过程中创建上下文,对象被配置为要求某些自动服务,如同步.事务.实时激活.安全性等等. 比如在计算机中,相对于进程而言,上下文就是进 ...
- ajax小知识
1.ajax发送get请求时,需要注意如下情况: var uri="http://127.0.0.1:8071/springmvcdemo/bigdataapi/publishdata&qu ...
- 【代码笔记】Web-HTML-简介
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- loadrunner 运行场景-常见Graph简介
运行场景-常见Graph简介 by:授客 QQ:1033553122 A. Web Resource Graphs 1. 概述 a) Hits per Second Graph Hits ...