CPU密集型(CPU-bound)

CPU密集型也叫计算密集型,指的是系统的硬盘、内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的时间就可以完成,而CPU还有许多运算要处理,CPU Loading很高。

在多重程序系统中,大部份时间用来做计算、逻辑判断等CPU动作的程序称之CPU bound。例如一个计算圆周率至小数点一千位以下的程序,在执行的过程当中绝大部份时间用在三角函数和开根号的计算,便是属于CPU bound的程序。

CPU bound的程序一般而言CPU占用率相当高。这可能是因为任务本身不太需要访问I/O设备,也可能是因为程序是多线程实现因此屏蔽掉了等待I/O的时间。

IO密集型(I/O bound)

IO密集型指的是系统的CPU性能相对硬盘、内存要好很多,此时,系统运作,大部分的状况是CPU在等I/O (硬盘/内存) 的读/写操作,此时CPU Loading并不高。

I/O bound的程序一般在达到性能极限时,CPU占用率仍然较低。这可能是因为任务本身需要大量I/O操作,而pipeline做得不是很好,没有充分利用处理器能力。

CPU密集型 vs IO密集型

我们可以把任务分为计算密集型和IO密集型。

计算密集型任务的特点是要进行大量的计算,消耗CPU资源,比如计算圆周率、对视频进行高清解码等等,全靠CPU的运算能力。这种计算密集型任务虽然也可以用多任务完成,但是任务越多,花在任务切换的时间就越多,CPU执行任务的效率就越低,所以,要最高效地利用CPU,计算密集型任务同时进行的数量应当等于CPU的核心数。

计算密集型任务由于主要消耗CPU资源,因此,代码运行效率至关重要。Python这样的脚本语言运行效率很低,完全不适合计算密集型任务。对于计算密集型任务,最好用C语言编写。

第二种任务的类型是IO密集型,涉及到网络、磁盘IO的任务都是IO密集型任务,这类任务的特点是CPU消耗很少,任务的大部分时间都在等待IO操作完成(因为IO的速度远远低于CPU和内存的速度)。对于IO密集型任务,任务越多,CPU效率越高,但也有一个限度。常见的大部分任务都是IO密集型任务,比如Web应用。

IO密集型任务执行期间,99%的时间都花在IO上,花在CPU上的时间很少,因此,用运行速度极快的C语言替换用Python这样运行速度极低的脚本语言,完全无法提升运行效率。对于IO密集型任务,最合适的语言就是开发效率最高(代码量最少)的语言,脚本语言是首选,C语言最差。

总之,计算密集型程序适合C语言多线程,I/O密集型适合脚本语言开发的多线程。
---------------------
作者:Java技术栈
来源:CSDN
原文:https://blog.csdn.net/youanyyou/article/details/78990156
版权声明:本文为博主原创文章,转载请附上博文链接!

什么是CPU密集型、IO密集型?的更多相关文章

  1. Python并发编程05 /死锁现象、递归锁、信号量、GIL锁、计算密集型/IO密集型效率验证、进程池/线程池

    Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密集型效率验证.进程池/线程池 目录 Python并发编程05 /死锁现象.递归锁.信号量.GIL锁.计算密集型/IO密 ...

  2. 并发编程~~~多线程~~~计算密集型 / IO密集型的效率, 多线程实现socket通信

    一 验证计算密集型 / IO密集型的效率 IO密集型: IO密集型: 单个进程的多线程的并发效率高. 计算密集型: 计算密集型: 多进程的并发并行效率高. 二 多线程实现socket通信 服务器端: ...

  3. cpu,io密集型计算概念

    I/O密集型 (CPU-bound) I/O bound 指的是系统的CPU效能相对硬盘/内存的效能要好很多,此时,系统运作,大部分的状况是 CPU 在等 I/O (硬盘/内存) 的读/写,此时 CP ...

  4. Python进阶----GIL锁,验证Cpython效率(单核,多核(计算密集型,IO密集型)),线程池,进程池

    day35 一丶GIL锁 什么是GIL锁:    存在Cpython解释器,全名:全局解释器锁.(解释器级别的锁) ​   GIL是一把互斥锁,将并发运行变成串行. ​   在同一个进程下开启的多个线 ...

  5. CPU密集型 VS IO密集型

    CPU密集型 CPU密集型也叫计算密集型,指的是系统的硬盘.内存性能相对CPU要好很多,此时,系统运作大部分的状况是CPU Loading 100%,CPU要读/写I/O(硬盘/内存),I/O在很短的 ...

  6. Python GIL、CPU密集型、IO密集型

    Python GIL(Global Interpreter Lock(全局解释器锁)) 1:进程里面多个线程,线程 共享A=10 2:Python解释器,A改完值之后会传回进程容器,为了防止A和B同时 ...

  7. CPU密集型和IO密集型(判断最大核心线程的最大线程数)

    CPU密集型和IO密集型(判断最大核心线程的最大线程数) CPU密集型 1.CPU密集型获取电脑CPU的最大核数,几核,最大线程数就是几Runtime.getRuntime().availablePr ...

  8. 计算&IO密集型任务的 优化

    问题原因: 最近由于工作实际需求,需要对某个计算单元的计算方法进行重构.原因是由于这个计算单元的计算耗时较长,单个计算耗时大约在1s-2s之间,而新的需求下,要求在20s内对大约1500个计算单元计算 ...

  9. Java多线程(二)关于多线程的CPU密集型和IO密集型这件事

    点我跳过黑哥的卑鄙广告行为,进入正文. Java多线程系列更新中~ 正式篇: Java多线程(一) 什么是线程 Java多线程(二)关于多线程的CPU密集型和IO密集型这件事 Java多线程(三)如何 ...

随机推荐

  1. SpringBoot(1) HTTP接口请求

    一.HTTP请求配置讲解 简介:SpringBoot2.x  HTTP请求注解讲解和简化注解配置技巧 1.@RestController和@RequestMapping是springMVC的注解,不是 ...

  2. Java设计模式学习记录-GoF设计模式概述

    前言 最近要开始学习设计模式了,以前是偶尔会看看设计模式的书或是在网上翻到了某种设计模式,就顺便看看,也没有仔细的学习过.前段时间看完了JVM的知识,然后就想着JVM那么费劲的东西都看完了,说明自己学 ...

  3. 鸟哥的Linux私房菜:基础学习篇 —— 第六章笔记

    1.下面这些就是比较特殊的目录,得要用力的记下来才行: . 代表此层目录 .. 代表上一层目录 - 代表前一个工作目录 ~ 代表“目前使用者身份”所在的主文件夹 ~account 代表 account ...

  4. KM算法及其应用

    在二分图匹配中有最大匹配问题,使用匈牙利算法或者网络流相关算法解决,如果给每条边增加一个权值,求权值和最大的匹配方案就叫做最大权匹配问题.其实之前所说的最大匹配就是权值为1的最大权匹配. 求最大权完备 ...

  5. MongoDB框架Jongo的使用介绍

    1.Jongo可以用来做什么?   Jongo框架的目的是使在MongoDB中可以直接使用的查询Shell可以直接在Java中使用.在官网首页有一个非常简洁的例子:   SHELL:这种查询方式是Mo ...

  6. [Luogu1365] WJMZBMR打osu! / Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有 \(n\) 次点击要做,成功了就是o,失败了就是x,分数是按com ...

  7. 发布webservice之后调用不通

    在websrvice发布文件的webconfig中加入 <httpRuntime maxRequestLength="102400" />  <webServic ...

  8. Morley's Therorem(UVA11178+几何)

    题意:Morley定理,求D.E.F的坐标 思路:没什么算法,就是几何的应用.注意旋转角就好了. 转载请注明出处:寻找&星空の孩子 题目链接:UVA11178 #include<cstd ...

  9. python爬虫简单代码爬取郭德纲单口相声

    搜索老郭的单口相声,打开检查模式,刷新 没有什么有价值的东东, 不过....清掉内容, 点击一个相声,再看看有些什么 是不是发现了些什么 我们来点击这个看看, 首先看一下headers, 这个url是 ...

  10. node.js入门学习笔记整理

    (1)node Node.js 是一个基于 Chrome V8 引擎的 JavaScript 运行环境. Node与javaScript的区别在于,javaScript的顶层对象是window,而no ...