1、如何申请资源

1.1 如何启动AM并申请资源

1.1.1 如何启动AM

val yarnClient = YarnClient.createYarnClient
setupCredentials()
yarnClient.init(yarnConf)
yarnClient.start()
// Get a new application from our RM
val newApp = yarnClient.createApplication()
val newAppResponse = newApp.getNewApplicationResponse()
appId = newAppResponse.getApplicationId()

// Set up the appropriate contexts to launch our AM
val containerContext = createContainerLaunchContext(newAppResponse)
val appContext = createApplicationSubmissionContext(newApp, containerContext)

// Finally, submit and monitor the application
logInfo(s"Submitting application $appId to ResourceManager")
yarnClient.submitApplication(appContext)

1.1.2 FairScheduler如何处理AM的ResourceRequest

1、FairScheduler接收到SchedulerEventType.APP_ADDED之后,调用addApplication方法把把RMApp添加到队列里面,结束之后发送RMAppEventType.APP_ACCEPTED给RMApp

2、RMApp启动RMAttempt之后,发送SchedulerEventType.APP_ATTEMPT_ADDED给FairScheduler

LOG.info("Added Application Attempt " + applicationAttemptId + " to scheduler from user: " + user);

3、FairScheduler调用addApplicationAttempt方法,发送RMAppAttemptEventType.ATTEMPT_ADDED事件给RMAppAttempt,RMAppAttempt随后调用Scheduler的allocate方法发送AM的ResourceRequest

4、FairScheduler在allocate方法里面对该请求进行处理,FairScheduler对于AM的资源请求的优先级上并没有特殊的照顾,详细请看章节2 如何分配资源

1.2 AM启动之后如何申请资源

1.2.1、注册AM

amClient = AMRMClient.createAMRMClient()
amClient.init(conf)
amClient.start()
amClient.registerApplicationMaster(Utils.localHostName(), 0, uiAddress)

1.2.2、发送资源请求

// 1.创建资源请求
amClient.addContainerRequest(request)
// 2.发送资源请求
val allocateResponse = amClient.allocate(progressIndicator)
val allocatedContainers = allocateResponse.getAllocatedContainers()
if (allocatedContainers.size > 0) {
  // 3.请求返回之后处理Container
  handleAllocatedContainers(allocatedContainers.asScala)
}

1.2.3、启动Container

def startContainer(): java.util.Map[String, ByteBuffer] = {
 val ctx = Records.newRecord(classOf[ContainerLaunchContext])
   .asInstanceOf[ContainerLaunchContext]
 val env = prepareEnvironment().asJava

 ctx.setLocalResources(localResources.asJava)
 ctx.setEnvironment(env)

 val credentials = UserGroupInformation.getCurrentUser().getCredentials()
 val dob = new DataOutputBuffer()
 credentials.writeTokenStorageToStream(dob)
 ctx.setTokens(ByteBuffer.wrap(dob.getData()))

 val commands = prepareCommand()

 ctx.setCommands(commands.asJava)
 ctx.setApplicationACLs(YarnSparkHadoopUtil.getApplicationAclsForYarn(securityMgr).asJava)

 // If external shuffle service is enabled, register with the Yarn shuffle service already
 // started on the NodeManager and, if authentication is enabled, provide it with our secret
 // key for fetching shuffle files later
 if (sparkConf.get(SHUFFLE_SERVICE_ENABLED)) {
   val secretString = securityMgr.getSecretKey()
   val secretBytes =
   if (secretString != null) {
     // This conversion must match how the YarnShuffleService decodes our secret
     JavaUtils.stringToBytes(secretString)
   } else {
     // Authentication is not enabled, so just provide dummy metadata
     ByteBuffer.allocate(0)
   }
   ctx.setServiceData(Collections.singletonMap("spark_shuffle", secretBytes))
 }

 // Send the start request to the ContainerManager
 try {
   nmClient.startContainer(container.get, ctx)
 } catch {
   case ex: Exception =>
     throw new SparkException(s"Exception while starting container ${container.get.getId}" +
       s" on host $hostname", ex)
 }
}

2、如何分配资源

2.1 接受资源请求步骤

在FairScheduler的allocate方法里面仅仅是记录ResourceRequest,并不会真正的立马分配。

流程如下:

1、检查该APP是否注册过

2、检查资源的请求是否超过最大内存和最大CPU的限制

3、记录资源请求的时间,最后container分配的延迟会体现在队列metrics的appAttemptFirstContainerAllocationDelay当中

4、释放AM发过来的已经不需要的资源,主要逻辑在FSAppAttempt的containerCompleted方法里

5、更新资源请求,所有资源请求都是记录在AppSchedulingInfo当中的requests(注意:只有是ANY的资源请求才会被立马更新到QueueMetrics的PendingResources里)

6、找出该APP被标记为抢占的container ID列表preemptionContainerIds

7、更新APP的黑名单列表,该信息被记录在AppSchedulingInfo当中

8、从FSAppAttempt的newlyAllocatedContainers当中获取最新被分配的container

9、返回preemptionContainerIds、HeadRoom、ContainerList、NMTokenList。(注:Headroom = Math.min(Math.min(queueFairShare - queueUsage, 0), maxAvailableResource)

2.2 请求和分配的关系

请求和分配的过程是异步的,关系如上图,每次调用allocate获得的container,其实是之前的请求被分配的结果

2.3 如何分配

2.3.1 分配方式

分配有两种方式:

1、接收到NodeManager的心跳的时候进行分配

NodeManager每隔一秒(yarn.resourcemanager.nodemanagers.heartbeat-interval-ms)给ResourceManager发送一个心跳事件NODE_UPDATE,接收到心跳事件之后,在FairScheduler的nodeUpdate方法里进行处理。

NodeManager会汇报新启动的Container列表newlyLaunchedContainers和已经结束的Container列表completedContainers。然后在attemptScheduling方法里面进行分配。

2、持续调度方式

它有一个单独的线程,线程名称是FairSchedulerContinuousScheduling,每5毫秒对所有节点的资源进行排序,然后遍历所有节点,调用attemptScheduling方法进行分配。

开启持续调度模式之后,在接收到心跳事件NODE_UPDATE的时候,只有在completedContainers不为空的情况下,才会进行调度

attemptScheduling首先会检查是否有资源预留,如果有预留,则直接为预留的APP分配container

没有预留的分配过程如下:

1、最大可分配资源为这台机器的可用资源的一半,从root队列开始自上而下进行分配Resource assignment = queueMgr.getRootQueue().assignContainer(node);

2、分配到一个Container之后,判断是否要连续分配多个,最大支持连续分配多少个?

以下是涉及到的各个参数以及参数的默认值:

yarn.scheduler.fair.assignmultiple false (建议设置为true)

yarn.scheduler.fair.dynamic.max.assign true (hadoop2.7之后就没有这个参数了)

yarn.scheduler.fair.max.assign -1 (建议设置为2~3,不要设置得太多,否则会有调度倾斜的问题)

2.3.2 如何从队列当中选出APP进行资源分配

入口在queueMgr.getRootQueue().assignContainer(node);

1、检查当前队列的使用量是否小于最大资源量

2、首先对子队列进行排序,优先顺序请参照章节 2.3.4 如何确定优先顺序

3、排序完再调用子队列的assignContainer方法分配container

4、一直递归到叶子队列

叶子队列如何进行分配?

1、先对runnableApps进行排序,排序完成之后,for循环遍历一下

2、先检查该Node是否在APP的黑名单当中

3、检查该队列是否可以运行该APP的AM,主要是检查是否超过了maxAMShare(根据amRunning字段判断是否已经启动了AM了)

检查逻辑的伪代码如下:

maxResource = getFairShare()
if (maxResource == 0) {
  // 最大资源是队列的MaxShare和集群总资源取一个小的值
  maxResource = Math.min(getRootQueue().AvailableResource(), getMaxShare());
}
maxAMResource = maxResource * maxAMShare
if (amResourceUsage + amResource) > maxAMResource) {
  // 可以运行
  return true
} else {
  // 不可以运行
  return false
}

4、给该APP分配container

下面以一个例子来说明分配的过程是如何选择队列的:

假设队列的结构是这样子的

root

---->BU_1

-------->A

-------->B

---->BU_2

-------->C

-------->D

2.3.3 任务分配Container的本地性

任务分配Container的时候会考虑请求的本地性,对于调度器来说,它的本地性分为三种:NODE_LOCAL, RACK_LOCAL, OFF_SWITCH

具体方法位于FSAppAttempt的assignContainer方法

遍历优先级

给该优先级的调度机会+1

获取RackLocal和NodeLocal的任务

计算允许分配的本地性级别allowedLocality,默认是NODE_LOCAL

1、心跳分配方式

计算调度机会,如果该优先级的任务的调度机会超过了(节点数 * NODE_LOCAL阈值),降级为RACK_LOCAL,如果该优先级的任务的调度机会超过了(节点数 * RACK_LOCAL阈值),降级为OFF_SWITCH

2、连续分配方式

计算等待时间waitTime -= lastScheduledContainer.get(priority);

如果waitTime超过了NODE_LOCAL允许的delay时间,就降级为RACK_LOCAL,再超过RACK_LOCAL允许的delay的时间,就降级为OFF_SWITCH

分配NODE_LOCAL的container

允许分配的本地性级别>=RACK_LOCAL,分配RACK_LOCAL的container

允许分配的本地性级别=OFF_SWITCH,分配OFF_SWITCH的container

都分不到,等待下一次机会

相关参数:

默认值全是-1,则允许的本地性级别是OFF_SWITCH

yarn.scheduler.fair.locality-delay-node-ms -1

yarn.scheduler.fair.locality-delay-rack-ms -1

yarn.scheduler.fair.locality.threshold.node -1

yarn.scheduler.fair.locality.threshold.rack -1

2.3.4 Container分配

1、检查该节点的资源是否足够,如果资源充足

2、如果当前的allowedLocality比实际分配的本地性低,则重置allowedLocality

3、把新分配的Container加到newlyAllocatedContainers和liveContainers列表中

4、把分配的container信息同步到appSchedulingInfo当中

5、发送RMContainerEventType.START事件

6、更新FSSchedulerNode记录的container信息

7、如果被分配的是AM,则设置amRunning为true

如果资源不够,则检查是否可以预留资源

条件:

1)Container的资源请求必须小于Scheduler的增量分配内存 * 倍数(默认应该是2g)

2)如果已经存在的预留数 < 本地性对应的可用节点 * 预留比例

3)一个节点只允许同时为一个APP预留资源

相关参数:

yarn.scheduler.increment-allocation-mb 1024

yarn.scheduler.increment-allocation-vcores 1

yarn.scheduler.reservation-threshold.increment-multiple 2

yarn.scheduler.fair.reservable-nodes 0.05

2.3.4 如何确定优先顺序

该比较规则同时适用于队列和APP,详细代码位于FairSharePolicy当中

MinShare = Math.min(getMinShare(), getDemand())

1、(当前资源使用量 / MinShare)的比值越小,优先级越高

2、如果双方资源使用量都超过MinShare,则(当前资源使用量 / 权重)的比值越小,优先级越高

3、启动时间越早,优先级越高

4、最后实在比不出来,就比名字...

从上面分配的规则当中能看出来MinShare是非常重要的一个指标,当资源使用量没有超过MinShare之前,队列在分配的时候就会比较优先,切记一定要设置啊!

注:getMinShare()是FairScheduler当中队列的minResources

<minResources>6887116 mb,4491 vcores</minResources>

Hadoop源码系列(一)FairScheduler申请和分配container的过程的更多相关文章

  1. [Hadoop源码系列] FairScheduler分配申请和分配container的过程

    1.如何申请资源 1.1 如何启动AM并申请资源 1.1.1 如何启动AM val yarnClient = YarnClient.createYarnClient setupCredentials( ...

  2. Hadoop源码解读系列目录

    Hadoop源码解读系列 1.hadoop源码|common模块-configuration详解2.hadoop源码|core模块-序列化与压缩详解3.hadoop源码|core模块-远程调用与NIO ...

  3. 安装Hadoop系列 — 导入Hadoop源码项目

    将Hadoop源码导入Eclipse有个最大好处就是通过 "ctrl + shift + r" 可以快速打开Hadoop源码文件. 第一步:在Eclipse新建一个Java项目,h ...

  4. 9 hbase源码系列(九)StoreFile存储格式

    hbase源码系列(九)StoreFile存储格式    从这一章开始要讲Region Server这块的了,但是在讲Region Server这块之前得讲一下StoreFile,否则后面的不好讲下去 ...

  5. HBase源码系列之HFile

    本文讨论0.98版本的hbase里v2版本.其实对于HFile能有一个大体的较深入理解是在我去查看"到底是不是一条记录不能垮block"的时候突然意识到的. 首先说一个对HFile ...

  6. Hadoop源码编译过程

    一.           为什么要编译Hadoop源码 Hadoop是使用Java语言开发的,但是有一些需求和操作并不适合使用java,所以就引入了本地库(Native Libraries)的概念,通 ...

  7. [导入]Eclipse 导入/编译 Hadoop 源码

    http://www.cnblogs.com/errorx/p/3779578.html 1.准备工作 jdk: eclipse: Maven: libprotoc :https://develope ...

  8. 基于Eclipse搭建Hadoop源码环境

    Hadoop使用ant+ivy组织工程,无法直接导入Eclipse中.本文将介绍如何基于Eclipse搭建Hadoop源码环境. 准备工作 本文使用的操作系统为CentOS.需要的软件版本:hadoo ...

  9. Eclipse 导入 Hadoop 源码

    1.准备工作 jdk: eclipse: Maven: libprotoc :https://developers.google.com/protocol-buffers/ hadoop:http:/ ...

随机推荐

  1. 简单分析Java中审批业务流程业务原理

  2. 洛谷P1774 最接近神的人_NOI导刊2010提高(02)(求逆序对)

    To 洛谷.1774 最接近神的人 题目描述 破解了符文之语,小FF开启了通往地下的道路.当他走到最底层时,发现正前方有一扇巨石门,门上雕刻着一幅古代人进行某种活动的图案.而石门上方用古代文写着“神的 ...

  3. Java实现FTP与SFTP文件上传下载

    添加依赖Jsch-0.1.54.jar <!-- https://mvnrepository.com/artifact/com.jcraft/jsch --> <dependency ...

  4. Android 屏幕适配问题分析

    一.屏幕分辨率.大小及相关单位介绍 Android categorizes device screens using two general properties: size and density. ...

  5. Spring AOP 配置通知方法的时候如何处理方法重载

    如何在method属性里指定重载方法中的某一个?

  6. BZOJ4912 : [Sdoi2017]天才黑客

    建立新图,原图中每条边在新图中是点,点权为$w_i$,边权为两个字符串的LCP. 对字典树进行DFS,将每个点周围一圈边对应的字符串按DFS序从小到大排序. 根据后缀数组利用height数组求LCP的 ...

  7. [P1020]导弹拦截 (贪心/DP/二分/单调队列)

    一道很经典的题 这道题就是要求一个最长单调不升子序列和一个最长单调上升子序列. 先打了一个n2复杂度的 用DP #include<bits/stdc++.h> using namespac ...

  8. SparkStreaming “Could not read data from write ahead log record” 报错分析解决

    # if open wal org.apache.spark.SparkException: Could not read data from write ahead log record FileB ...

  9. Javascript数组(一)排序

    一.简介首先,我们来看一下JS中sort()和reverse()这两个函数的函数吧reverse();这个函数是用来进行倒序,这个没有什么可说的,所谓倒序就是大的在前面,小的在后面. 比如: var ...

  10. 网卡最大传输单位MTU和巨型帧(Jumbo frame)设置

    1. 背景:在1998年,Alteon Networks 公司提出把Data Link Layer最大能传输的数据从1500 bytes 增加到9000 bytes,这个提议虽然没有得到IEEE 80 ...